Xiang Li, Keyi Wang, Yan Lin Wang and Kui Cheng Wang
Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture…
Abstract
Purpose
Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture plays a critical role for rehabilitation, footwear design, clinical diagnostics and sports activities, and so on. This paper aims to review plantar force measurement technologies based on piezoelectric materials, which can make the reader understand preliminary works systematically and provide convenience for researchers to further study.
Design/methodology/approach
The review introduces working principle of piezoelectric sensor, structures and hardware design of plantar force measurement systems based on piezoelectric materials. The structures of sensors in plantar force measurement systems can be divided into four kinds, including monolayered sensor, multilayered sensor, tri-axial sensor and other sensor. The previous studies about plantar force measurement system based on piezoelectric technology are reviewed in detail, and their characteristics and performances are compared.
Findings
A good deal of measurement technologies have been studied by researchers to detect and analyze the plantar force. Among these measurement technologies, taking advantage of easy fabrication and high sensitivity, piezoelectric sensor is an ideal candidate sensing element. However, the number and arrangement of the sensors will influence the characteristics and performances of plantar force measurement systems. Therefore, it is necessary to further study plantar force measurement system for better performances.
Originality/value
So far, many plantar force measurement systems have been proposed, and several reviews already introduced plantar force measurement systems in the aspect of types of pressure sensors, experimental setups for foot pressure measurement analysis and the technologies used in plantar shear stress measurements. However, this paper reviews plantar force measurement systems based on piezoelectric materials. The structures of piezoelectric sensors in the measurement systems are discussed. Hardware design applied to measurement system is summarized. Moreover, the main point of further study is presented in this paper.
Details
Keywords
Yucheng Shi, Deren Kong and Xuejiao Ma
The purpose of this study is to clarify the mechanism of ambient and transient temperature effects on piezoelectric pressure sensors, and to propose corresponding compensation…
Abstract
Purpose
The purpose of this study is to clarify the mechanism of ambient and transient temperature effects on piezoelectric pressure sensors, and to propose corresponding compensation measures. The temperature of the explosion field has a significant influence on the piezoelectric sensor used to measure the shock wave pressure. For accurate shock wave pressure measurement, based on the actual piezoelectric pressure sensors used in the explosion field, the effects of ambient and transient temperatures on the sensor should be studied.
Design/methodology/approach
The compensation method of the ambient temperature is discussed according to the sensor size and material. The theoretical analysis method of the transient temperature is proposed. For the transient temperature conduction problem of the sensor, the finite element simulation method of structure-temperature coupling is used to solve the temperature distribution of the sensor and the change in the contact force on the quartz crystal surface under the step and triangle temperatures. The simulation results are highly consistent with the theory.
Findings
Based on the analysis results, a transient temperature control method is proposed, in which 0.5 mm thick lubricating silicone grease is applied to the sensor diaphragm, and 0.2 mm thick fiberglass cloth is wrapped around the sensor side. Simulation experiments are carried out to verify the feasibility of the control method, and the results show that the control method effectively suppresses the output of the thermal parasitic.
Originality/value
The above thermal protection methods can effectively improve the measurement accuracy of shock wave pressure and provide technical support for the evaluation of the power of explosion damage.
Details
Keywords
Junhui Zhang, Sai Zhang, Yuhua Yang and Wendong Zhang
Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy…
Abstract
Purpose
Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy integration. This study aims to provide direction for the advancement of MEMS acoustic emission sensors and predict their future potential for structural health detection of microprecision instruments.
Design/methodology/approach
This paper summarizes the recent research progress of three MEMS acoustic emission sensors, compares their individual strengths and weaknesses, analyzes their research focus and predicts their development trend in the future.
Findings
Piezoresistive, piezoelectric and capacitive MEMS acoustic emission sensors are the three main streams of MEMS acoustic emission sensors, which have their own advantages and disadvantages. The existing research has not been applied in practice, and MEMS acoustic emission sensor still needs further research in the aspects of wide frequency/high sensitivity, good robustness and integration with complementary metal oxide semiconductor. MEMS acoustic emission sensor has great development potential.
Originality/value
In this paper, the existing research achievements of MEMS acoustic emission sensors are described systematically, and the further development direction of MEMS acoustic emission sensors in the future research field is pointed out. It provides an important reference value for the actual weak acoustic emission signal detection in narrow structures.
Details
Keywords
B. Morten, G. De Cicco, A. Gandolfi and C. Tonelli
A study has been carried out on the relationship between the composition, poling condition and piezoelectric properties of thick film layers. Pastes based on…
Abstract
A study has been carried out on the relationship between the composition, poling condition and piezoelectric properties of thick film layers. Pastes based on lead‐titanate‐zirconate (PZT) powders, with either PbO or a lead‐alumina‐silicate glass frit as binder, were prepared. Microstructure, electrical and mechanical properties were analysed. Processing and poling conditions modify these properties; then a wide latitude of opportunities is offered in the choice of ferroelectric/piezoelectric characteristics of the layers used as sensing elements for sensors. A pressure sensor was realised where a circular diaphragm of alumina supports two piezoelectric layers obtained by screen printing and firing a PZT/PbO‐based ferroelectric paste. The design and the performance characteristics are described.
Yu Tian, Jun Zhang, Zongjin Ren, Wei Liu, Zhenyuan Jia and Qingbing Chang
This paper aims to improve calibration and force measurement accuracy of multi-sensors’ piezoelectric dynamometer used in thrust measurement of rocket/air vehicle engine.
Abstract
Purpose
This paper aims to improve calibration and force measurement accuracy of multi-sensors’ piezoelectric dynamometer used in thrust measurement of rocket/air vehicle engine.
Design/methodology/approach
This paper presents a mapping solution method of sensors’ outputs based on the Kirchhoff thin plate theory, builds force-deformation differential equations with specific boundary conditions, uses finite difference (FD) method to solve the equations and analyzes outputs in offset loading forces in four-sensor square layout in main direction. The resultant force deviations calculated by the Kirchhoff theory are optimized with sequence quadratic program (SQP) method, and a calibration method of multiple loading points (MLP) based on the Kirchhoff theory is presented. Experiments of static calibration and verification are complemented to contrast the novel and single loading point (SLP) calibration method.
Findings
Experiments of static calibration and its verification show that at a loading force of 5,000N, the average resultant force deviations with MLP is 17.87N (0.35% FS) compared with single loading point method 26.45N (0.53% FS), improving calibration and measurement precision.
Originality value
A novel calibration method with MLP is presented. Force distributions of multiple sensors of main direction in piezoelectric dynamometer with offset loading force are solved with the Kirchhoff theory. The resultant force deviations calculated by Kirchhoff theory are optimized with the SQP method.
Details
Keywords
Huijie Jin, Suihan Sui and Changyin Gao
Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage…
Abstract
Purpose
Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage over the use of quartz disk, but research into the torsional effect of quartz pillar is rare. This paper aims to investigate a novel type of torque sensor based on piezoelectric torsional effect.
Design/methodology/approach
Based on the theory of anisotropic elasticity and the Maxwell electromagnetism, the torsion stress and distribution of surface charge of a rectangular quartz pillar are calculated. Using finite element analysis, the polarized electric field of the piezoelectric pillar is solved. According to the theoretical calculation of torsional effect of piezoelectric quartz pillar, detection electrodes are mounted on the surface of the quartz pillar and a new type of torque sensor is designed.
Findings
The calibration experimental results show that the bound charges are proportional to the torque applied, and the torque sensor has fully reached the dynamometer standard.
Originality/value
This paper shows that the torsional effect of the developed piezoelectric quartz pillar can be used to create a new type of piezoelectric torque sensor.
Details
Keywords
Ewa Klimiec, Piotr Zachariasz, Halina Kaczmarek, Bogusław Królikowski and Sławomir Mackiewicz
This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites…
Abstract
Purpose
This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites (thin films enriched with 5 and 10 wt% of mineral fillers as Sillikolloid P 87 and glass beads) should exhibit suitable structural elasticity within specific stress ranges. After the deformation force is removed, the sensor material must completely restore its original shape and size.
Design/methodology/approach
Estimating the stiffness tensor element (C33) for polymer films (nonpolar space-charge electrets) by broadband resonance ultrasound spectroscopy is a relatively simple method of determining the safe stress range generated in thin pressure sensors. Therefore, ultrasonic and piezoelectric studies were carried out on four composite it-PP films. First, the longitudinal velocity (vL) of ultrasonic waves passing through the it-PP film in the z-direction (thickness) was evaluated from the ω-position of mechanical resonance of the so-called insertion loss function. In turn, the d33 coefficient was calculated from accumulated piezoelectric charge density response to mechanical stress.
Findings
Research is at an early stage; however, it can be seen that the mechanical orientation of the it-PP film improves its piezoelectric properties. Moreover, the three-year electric charge stability of the it-PP film seems promising.
Originality/value
Ultrasonic spectroscopy can be successfully handled as a validation method in the small-lot production of polymer films with the air-cavities structure intended for pressure sensors. The structural repeatability of polymer films is strongly related to a homogeneous distribution of the electric charge on the electret surface.
Details
Keywords
Litesh N Sulbhewar and P. Raveendranath
Piezoelectric extension mode smart beams are vital part of modern control technology and their numerical analysis is an important step in the design process. Finite elements based…
Abstract
Purpose
Piezoelectric extension mode smart beams are vital part of modern control technology and their numerical analysis is an important step in the design process. Finite elements based on First-order Shear Deformation Theory (FSDT) are widely used for their structural analysis. The performance of the conventional FSDT-based two-noded piezoelectric beam formulations with assumed independent linear field interpolations is not impressive due to shear and material locking phenomena. The purpose of this paper is to develop an efficient locking-free FSDT piezoelectric beam element, while maintaining the same number of nodal degrees of freedom.
Design/methodology/approach
The governing equations are derived using a variational formulation to establish coupled polynomial field representation for the field variables. Shape functions based on these coupled polynomials are employed here. The proposed formulation eliminates all locking effects by accommodating strain and material couplings into the field interpolation, in a variationally consistent manner.
Findings
The present formulation shows improved convergence characteristics over the conventional formulations and proves to be the most efficient way to model extension mode piezoelectric smart beams, as demonstrated by the results obtained for numerical test problems.
Originality/value
To the best of the authors’ knowledge, no such FSDT-based finite element with coupled polynomial shape function exists in the literature, which incorporates electromechanical coupling along with bending-extension and bending-shear couplings at the field interpolation level itself. The proposed formulation proves to be the fastest converging FSDT-based extension mode smart beam formulation.
Details
Keywords
Artur Szewieczek, Christian Willberg, Daniel Schmidt and Michael Sinapius
A design of sensor networks for structural health monitoring (SHM) with guided waves poses a hard challenge. Therefore different approaches are possible. A known one is the usage…
Abstract
Purpose
A design of sensor networks for structural health monitoring (SHM) with guided waves poses a hard challenge. Therefore different approaches are possible. A known one is the usage of probability of detection (POD) criteria. Here, areas of potential impact sensitivity are calculated for every sensor which leads to a POD. The number of sensors is increased until a demanded POD is reached. However, these calculations are usually based on finite element methods and underlie different assumptions and approximations which can cause different inaccuracies. These limitations are avoided by using an experimental data basis for virtual sensors in this paper. The paper aims to discuss these issues.
Design/methodology/approach
An air-coupled ultrasound scanning technique is used for guided wave investigations. Recorded displacements of a structure surface are used as stimulation of virtual sensors which can be designed by software and positioned within available data field. For the calculation of sensor signals an isogeometric finite element model is used. The virtually bonded layer of the virtual piezoceramic sensor interpolates with non-uniform rational B-Splines (NURBS) the measured nodal data for each time step. This interpolation corresponds to a displacement boundary condition and is used to calculate the electrical potential at the free surface of the sensor.
Findings
Experimental data based on air-coupled ultrasound scanning technique can be used for elimination of disadvantages in numerical simulations by developing sensor networks for SHM. In combination with a transfer matrix method (TM) a three-dimensional displacement of specimen surface for complex composites can be calculated. To obtain the sensor signal a surface-bonded sensor is modeled by an isogeometric finite element approach. A good accordance is found between calculated virtual sensor signal and its experimental verification.
Research limitations/implications
Some deviations between calculated signal and its experimental verification are mainly justified by different spectral transfer functions between wave field scanning technique and signal recording of applied sensors. Furthermore, sensor influence on wave propagation is neglected in the presented method.
Originality/value
In this paper, the principle of virtual sensors is applied on anisotropic multilayered lamina by using isogeometric finite elements for piezoelectric sensors. This enables any sensor dimension, layout and position on complex composites. Furthermore a bonding layer between specimen and sensor is considered. The method allows a detailed analysis of sensor behavior on a specimen surface and the design and optimization of entire sensor networks for SHM.
Details
Keywords
Shaoyi Xu, Fangfang Xing, Ruilin Wang, Wei Li, Yuqiao Wang and Xianghui Wang
At present, one of the key equipment in pillar industries is a large rotating machinery. Conducting regular health monitoring is important for ensuring safe operation of the large…
Abstract
Purpose
At present, one of the key equipment in pillar industries is a large rotating machinery. Conducting regular health monitoring is important for ensuring safe operation of the large rotating machinery. Because vibrations sensors play an important role in the workings of the rotating machinery, measuring its vibration signal is an important task in health monitoring. This paper aims to present these.
Design/methodology/approach
In this work, the contact vibration sensor and the non-contact vibration sensor have been discussed. These sensors consist of two types: the electric vibration sensor and the optical fiber vibration sensor. Their applications in the large rotating machinery for the purpose of health monitoring are summarized, and their advantages and disadvantages are also presented.
Findings
Compared with the electric vibration sensor, the optical fiber vibration sensor of large rotating machinery has unique advantages in health monitoring, such as provision of immunity against electromagnetic interference, requirement of less insulation and provision of long-distance signal transmission.
Originality/value
Both contact vibration sensor and non-contact vibration sensor have been discussed. Among them, the electric vibration sensor and the optical fiber vibration sensor are compared. Future research direction of the vibration sensors is presented.