References

Niladri Syam (University of Missouri, USA)
Rajeeve Kaul (McDonald's Corporation, USA)

Machine Learning and Artificial Intelligence in Marketing and Sales

ISBN: 978-1-80043-881-1, eISBN: 978-1-80043-880-4

Publication date: 10 March 2021

Citation

Syam, N. and Kaul, R. (2021), "References", Machine Learning and Artificial Intelligence in Marketing and Sales, Emerald Publishing Limited, Leeds, pp. 183-189. https://doi.org/10.1108/978-1-80043-880-420211007

Publisher

:

Emerald Publishing Limited

Copyright © 2021 Emerald Publishing Limited


Abdul-Kader and Woods, 2015 Abdul-Kader, S. , & Woods, J. (2015). Survey of chatbot design techniques in speech conversation systems. International Journal of Advanced Computer Science and Applications, 6(7), 7280.

Abrahams et al., 2009 Abrahams, A. , Becker, A. , Sabido, D. , D'Souza, R. , George, M. , & Kransnodebski, M. (2009). Inducing a marketing strategy for a new pet insurance company using decision trees. Expert Systems with Applications, 36, 19141923.

Agarwal and Schorling, 1996 Agarwal, D. , & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383407.

Aggarwal and Zhai, 2012 Aggarwal, C. , & Zhai, C. X. (2012). A survey of text classification algorithms. In C. Aggarwal & C. X. Zhai (Eds.), Mining text data (pp. 163222). Berlin: Springer.

Anderson, 1970 Anderson, N. (1970). Functional measurement and psychophysical judgment. Psychological Review, 77, 153170.

Anderson, 1971 Anderson, N. (1971). Integration theory and attitude change. Psychological Review, 78, 177206.

Andrews et al., 2002 Andrews, R. , Ansari, A. , & Imran, C. (2002). Hierarchical Bayes versus finite mixture conjoint analysis models: A comparison of fit, prediction, and partworth recovery. Journal of Marketing Research, 39, 8798.

Apampa, 2016 Apampa, O. (2016). Evaluation of classification and ensemble algorithms for bank customer marketing response prediction. Journal of International Technology and Information Management, 24(4), 85100.

Bagozzi, 1994 Bagozzi, R. (1994). Advanced methods of marketing research. Cambridge, MA: Basil Blackwell Ltd.

Bahnsen et al., 2015 Bahnsen, A. C. , Aouada, D. , & Ottersten, B. (2015). Example-dependent cost-sensitive decision trees. Expert Systems with Applications, 42, 66096619.

Baines et al., 2003 Baines, P. , Worcester, R. , David, J. , & Mortimore, R. (2003). Market segmentation and product differentiation in political campaigns. Journal of Marketing Management, 19(1–2), 225249.

Bajari et al., 2015 Bajari, P. , Nekipelov, D. , Ryan, S. P. , & Yang, M. (2015). Machine learning methods for demand estimation. The American Economic Review, 105(5), 481485.

Balakrishnan et al., 1996 Balakrishnan, P. , Cooper, M. , Jacob, V. , & Lewis, P. (1996). Comparative performance of the FSCL neural net and K-means algorithm for market segmentation. European Journal of Operational Research, 93(10), 346357.

Bejju, 2016 Bejju, A. (2016). Sales analysis of E-commerce websites using data mining techniques. International Journal of Computer Applications, 133(5), 3640.

Ben-Hur et al., 2001 Ben-Hur, A. , Horn, D. , Siegelmann, H. , & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125137.

Bensic et al., 2005 Bensic, M. , Sarlija, N. , & Zekic-Susac, M. (2005). Modeling small-business credit scoring by using logistic regression, neural networks and decision trees. Intelligent Systems in Accounting, Finance and Management, 13, 133150.

Bishop, 1995 Bishop, C. (1995). Regularization and complexity control in feed forward networks . Technical Report NCRG/95/022, University of Aston, Birmingham.

Blattberg et al., 2008 Blattberg, R. , Kim, B.-D. , & Neslin, S. (2008). Database marketing: Analyzing and managing customers. Berlin: Springer.

Bloom, 2005 Bloom, J. (2005). Market segmentation - a neural network application. Annals of Tourism Research, 32, 93111. doi:10.1016/j.annals.2004.05.001

Boone and Roehm, 2002 Boone, D. , & Roehm, M. (2002). Retail segmentation using artificial neural networks. International Journal of Research in Marketing, 19(3), 287301.

Boser et al., 1992 Boser, B. , Guyon, I. M. , & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. COLT '92: Proceedings of the fifth annual workshop on Computational learning theory (pp. 144152). doi:10.1145/130385.130401

Breiman, 2001 Breiman, L. (2001). Random forests. Machine Learning, 45, 532.

Brieman et al., 1984 Brieman, L. , Friedman, J. , Ohlsen, R. , & Stone, C. (1984). Classification and regression trees. New York, NY: Wadsworth.

Carbonneau et al., 2008 Carbonneau, R. , Laframboise, K. , & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184, 11401154.

Casdagli, 1989 Casdagli, M. (1989). Nonlinear prediction of chaotic time-series. Physica, 35, 335356.

Chattopadhyay et al., 2012 Chattopadhyay, M. , Dan, P. K. , Majumdar, S. , & Chakraborty, P. S. (2012). Application of artificial neural network in market segmentation: A review on recent trends. Management Science Letters, 2, 425438. Retrieved from https://arxiv.org/abs/1202.2445

Chau and Chen, 2008 Chau, M. , & Chen, H. (2008). A machine learning approach to web page filtering using content and structure analysis. Decision Support Systems, 44(2), 482494.

Cheung et al., 2000 Cheung, W. , James, K. , Law, M. , & Tsui, K.-C. (2000). Mining customer preference ratings for product recommendation using the support vector machine and the latent class model. In C. A. Brebbia & N. F. F. Ebecken (Eds.), Data mining II. WIT Press. 1-85312-821-X. Retrieved from www.witpress.com

Cheung et al., 2003 Cheung, W. , James, K. , Law, M. , & Tsui, K.-C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35, 231243.

Chiu and Lin, 2004 Chiu, M. , & Lin, G. (2004). Collaborative supply chain planning using the artificial neural network approach. Journal of Manufacturing Technology Management, 15(8), 787796.

Cho and Ngai, 2003 Cho, V. , & Ngai, E. (2003, July). Data mining for selection of insurance sales agents. Expert Systems, 20(3), 123132.

Corstjens and Gautschi, 1983 Corstjens, M. , & Gautschi, D. (1983). Formal choice models in marketing. Marketing Science, 2(1), 1956.

Cortez et al., 2009 Cortez, P. , Cerdeira, A. , Almeida, F. , Matos, T. , & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47, 547553.

Coussement and Van den Poel, 2008 Coussement, K. , & Van den Poel, D. (2008). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34, 313327.

Coussement et al., 2014 Coussement, K. , Bossche Van den, F. , & De Bock, K. (2014). Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees. Journal of Business Research, 67, 27512758.

Cui and Curry, 2005 Cui, D. , & Curry, D. (2005). Prediction in marketing using the support vector machine. Marketing Science, 24(4), 595615.

Currim et al., 1988 Currim, I. , Meyer, R. , & Le, N. (1988). Disaggregate tree- structured modeling of consumer choice data. Journal of Marketing Research, 25(August), 253265.

Cybenko, 1989 Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2, 303314.

De Caigny et al., 2018 De Caigny, A. , Coussement, K. , & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269, 760772.

Delen et al., 2013 Delen, D. , Kuzey, C. , & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40, 39703983.

Dimopoulos et al., 1995 Dimopoulos, Y. , Paul, B. , & Sovan, L. (1995). Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters, 2(6), 14.

Dooley, 2017 Dooley, B. (2017). Why AI with augmented and virtual reality will be the next big thing. Retrieved from https://upside.tdwi.org/articles/2017/04a/04/ai-with-augmented-and-virtual-reality-next-big-thing.aspx

Duchessi and Lauria, 2013 Duchessi, P. , & Lauria, E. (2013). Decision tree models for profiling ski resorts' promotional and advertising strategies and the impact on sales. Expert Systems with Applications, 40, 58225829.

Evgeniou et al., 2005 Evgeniou, T. , Boussios, C. , & Zacharia, G. (2005). Generalized robust conjoint estimation. Marketing Science, 24(3), 415429.

Fish et al., 1995 Fish, K. , Barnes, J. , & Aiken, M. (1995). Artificial neural networks: A new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431438.

Frew and Wilson, 2002 Frew, J. F. , & Wilson, B. (2002). Estimating the connection between location and property value. Journal of Real Estate Practice and Education, 5(1), 1725.

Friedman, 2002 Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4), 367378.

Galindo and Tamayo, 2000 Galindo, J. , & Tamayo, P. (2000). Credit risk assessment using statistical and machine learning: Basic methodology and risk modelling applications. Computational Economics, 15, 107143.

Gao et al., 2019 Gao, J. , Galley, M. , & Li, L. (2019). Neural approaches to conversational AI. Foundations and Trends® in Information Retrieval, 13(2–3), 127298. doi:10.1561/1500000074

Garg and Tai, 2014 Garg, A. , & Tai, K. (2014). An ensemble approach of machine learning in evaluation of mechanical property of the rapid prototyping fabricated prototype. Applied Mechanics and Materials, 575, 493496.

Garson, 1991 Garson, G. D. (1991). Interpreting neural network connection weights. Artificial Intelligence Expert, 6(4), 4651.

Gordini and Veglio, 2017 Gordini, N. , & Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry. Industrial Marketing Management, 62, 100107.

Govidarajan, 2013 Govidarajan, M. (2013). A hybrid framework using RBF and SVM for direct marketing. International Journal of Advanced Computer Science and Applications, 4(4), 121126.

Grover and Dillon, 1985 Grover, R. , & Dillon, W. R. (1985). A probabilistic model for testing hypothesized hierarchical market structures. Marketing Science, 4(Fall), 312335.

Gruca et al., 1999 Gruca, T. , Klemz, B. , & Petersen, E. (1999). Mining sales data using a neural network model of market response. ACM SIGKDD, 1(1), 3943.

Guido et al., 2011 Guido, G. , Prete, M. I. , Miraglia, S. , & De Mare, I. (2011). Targeting direct marketing campaigns by neural networks. Journal of Marketing Management, 27(9–10), 9921006.

Hastie et al., 2009 Hastie, T. , Tibshirani, R. , & Friedman, J. (2009). Elements of statistical learning. Springer series in statistics. New York, NY: Springer.

Haughton and Oulabi, 1997 Haughton, D. , & Oulabi, S. (1997). Direct marketing modeling with CART and CHAID. Journal of Direct Marketing, 11(4), 4252.

Hill et al., 1996 Hill, T. , O'Connor, M. , & Remus, W. (1996). Neural network models for time series forecasts. Management Science, 42(7), 10821092.

Hruschka and Natter, 1999 Hruschka, H. , & Natter, M. (1999). Comparing performance of feedforward neural nets and K-means for market segmentation. European Journal of Operational Research, 114, 346353.

Hruschka, 1993 Hruschka, H. (1993). Determining market response functions by neural network modeling: A comparison of econometric techniques. European Journal of Operational Research, 66(1), 346353.

Huang et al., 2004 Huang, Z. , Chen, H. , Hsu, C.-J. , Chen, W.-H. , & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37, 543558.

Huang et al., 2007 Huang, J.-J. , Tzeng, G.-H. , & Ong, C.-S. (2007). Marketing segmentation using support vector clustering. Expert Systems with Applications, 32, 313317.

James et al., 2013 James, G. , Witten, D. , Hastie, T. , & Tibshirani, R. , (2013). An introduction to statistical learning: With applications in R (1st ed., Springer Texts in Statistics). New York, NY: Springer.

Joachims, 1998 Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Proc. of ECML, 98, 137142. Springer-Verlag.

Johnston and Marshall, 2013 Johnston, M. , & Marshall, G. (2013). Sales force management (11th ed.). Abingdon: Routledge.

Kass, 1980 Kass, G. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of the Royal Statistical Society, Series C (Applied Statistics), 29(2), 119127.

Kim et al., 2001 Kim, J. W. , Lee, B. H. , Shaw, M. J. , Chang, H.-Lu , & Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on internet storefronts. International Journal of Electronic Commerce, 5(3), 4562.

Kim et al., 2005 Kim, Y. , Street, W. N. , Russell, G. J. , & Menczer, F. (2005). Customer targeting: A neural network approach guided by genetic algorithm. Management Science, 51, 264276.

Kim et al., 2008 Kim, D. , Lee, H.-J. , & Cho, S. (2008). Response modeling with support vector regression. Expert Systems with Applications, 34, 11021108.

Knott et al., 2002 Knott, A. , Hayes, A. , & Scott, N. (2002). Marketplace: Next-product-to-buy models for cross-selling applications. Journal of Interactive Marketing, 16(Summer), 3.

Krotov and Hopfield, 2019 Krotov, D. , & Hopfield, J. J. (2019, April 16). Unsupervised learning by competing hidden units. Proceedings of the National Academy of Sciences, 116(16), 77237731.

Krycha, 1999 Krycha, K. A. (1999). Market segmentation and profiling using artificial neural networks. In W. Gaul & H. Locarek-Junge (Eds.), Classification in the information age. Studies in classification, data analysis, and knowledge organization. Berlin, Heidelberg: Springer.

Kumar and Ravi, 2008 Kumar, D. A. , & Ravi, V. (2008). Predicting credit card customer churn in banks using data mining. International Journal of Data Analysis Techniques and Strategies, 1(1), 428.

Kumar et al., 1995 Kumar, A. , Rao, V. , & Soni, H. (1995). An empirical comparison of neural networks and logistic regression. Marketing Letters, 6(4), 251263.

Landt, 1997 Landt, F. W. (1997). Stock price predictions using neural networks . Leiden: Leiden University.

Lawrence et al., 1996 Lawrence, S. , Tsoi, A. , & Gilles, C. (1996). Noisy time series prediction using symbolic representation and recurrent neural network grammatical inference . University of Maryland, College Park, MD: University of Maryland, Institute for Advanced Computer Sciences.

Lek et al., 1995 Lek, S. , Beland, A. , Dimopoulos, I. , Lauga, J. , & Moreau, J. (1995). Improved estimation using neural networks, of the food consumption of fish populations. Marine and Freshwater Research, 46, 12291236.

Lek et al., 1996 Lek, S. , Delacoste, M. , Baran, P. , Dimopoulos, I. , Lauga, J. , & Aulagnier, S. (1996). Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90(1), 3952.

Lemmens and Croux, 2006 Lemmens, A. , & Croux, C. (2006). Bagging and boosting of classification trees to predict churn. Journal of Marketing Research, 42, 276286.

Li and Wu, 2010 Li, N. , Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48, 354368.

Lin et al., 2017 Lin, W. , Wu, Z. , Lin, L. , Wen, A. , & Lin, L. (2017). An ensemble random forest algorithm for insurance big data analysis. IEEE Access, 5, 1656816575.

Linder et al., 2004 Linder, R. , Geier, J. , & Kolliker, M. (2004). Artificial neural networks, classification trees and regression: Which methods for which customer base? Database Marketing and Customer Strategy Management, 11(4), 344356.

Magidson, 1988 Magidson, J. (1988). New statistical techniques in direct marketing: Progression beyond regression. Journal of Direct Marketing, 2(4), 618.

Magidson, 1989 Magidson, J. (1989). CHAID, logit, and log-linear modeling. Marketing Research Systems, Report 11-130, 101114.

Mahajan and Jain, 1978 Mahajan, V. , & Jain, A. (1978). An approach to normative segmentation. Journal of Marketing Research, 15, 338345.

Makridakis et al., 1982 Makridakis, S. , Anderson, A. , Carbone, R. , Fildes, R. , Hibon, M. , Lewandowski, R. , … Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1, 111153.

Martínez-Ruiz et al., 2006 Martínez-Ruiz, M. P. , Molla-Descals, A. , Gomez-Borja, M. , & Rojo-Alvarez, J. (2006). Assessing the impact of temporary retail price discounts intervals using SVM semiparametric regression. International Review of Retail, Distribution and Consumer Research, 16(2), 181197.

Martínez-Ruiz et al., 2008 Martínez-Ruiz, M. P. , Gomez-Borja, M. A. , Molla-Descals, A. , & Rojo-Alvarez, J. L. (2008). Using support vector semiparametric regression to estimate the effects of pricing on brand substitution. International Journal of Marketing Research, 50(4), 555557.

McCulloch and Pitts, 1943 McCulloch, W. , & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115133.

Messenger and Mandell, 1972 Messenger, R. , & Mandell, L. (1972). A modal search technique for predictable nominal scale multivariate analysis. Journal of the American Statistical Association, 67(340), 768772.

Mizuno et al., 2008 Mizuno, M. , Saji, A. , Sumita, U. , & Suzuki, H. (2008). Optimal threshold analysis of segmentation methods for identifying target customers. European Journal of Operational Research, 186, 358379.

Morgan and Sonquist, 1963 Morgan, J. , & Sonquist, J. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association, 58, 415434.

Mukherjee et al., 1997 Mukherjee, S. , Osuna, E. , & Girosi, F. (1997). Nonlinear prediction of chaotic time series using support vector machines. Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop. Added to IEEE Explore in 06 August 2002. doi:10.1109/NNSP.1997.622433

Neslin et al., 2006 Neslin, S. , Gupta, S. , Kamakura, W. , Lu, J. , & Mason, C. (2006, May). Defection detection: Measuring and understanding the predictive accuracy of customer churn models. Journal of Marketing Research, 43(2), 204211.

Netzer et al., 2012 Netzer, O. , Feldman, R. , Goldenberg, J. , & Fresko, M. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521543.

Olden and Jackson, 2002 Olden, J. D. , & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1–2), 135150.

Özesmi and Özesmi, 1999 Özesmi, S. L. , & Özesmi, U. (1999). An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological Modelling, 116(1), 1531.

Potharst et al., 2001 Potharst, R. , Kaymak, U. , & Pijl, W. (2001). Neural networks for target selection in direct marketing . ERIM Report Series Research in Management, ERS-2001-14-LIS. Retrieved from https://www.igi-global.com/chapter/neural-networks-business/27261

Razmochaeva and Klionsky, 2019 Razmochaeva, N. , & Klionsky, D. (2019). Data presentation and application of machine learning methods for automating retail sales management processes. IEEE Explore. doi:10.1109/EIConRus.2019.8657077

Rokach et al., 2008 Rokach, L. , Naamani, L. , & Shmilovici, A. (2008). Pessimistic cost-sensitive active learning of decision tree for profit maximizing targeting campaigns. Data Mining and Knowledge Discovery, 17, 283316.

Sapankevych and Sankar, 2009 Sapankevych, N. , & Sankar, R. (2009). Time series prediction using support vector machines. IEEE Computational Intelligence Magazine, 4(2), 2438.

Sheu et al., 2009 Sheu, J.-J. , Su, Y.-H. , & Chu, Ko-T. (2009). Segmenting online game customers - the perspective of experiential marketing. Expert Systems with Applications, 36, 84878495.

Shih et al., 2014 Shih, J.-Y. , Chen, W.-H. , & Chang, Y.-J. (2014). Developing target marketing models for personal loans. IEEE. 978-1-4799-6410-9.

Shin and Cho, 2006 Shin, H.J. , & Cho, S. (2006). Response modeling with support vector machines. Expert Systems with Applications, 30, 746760.

Sun et al., 2009 Sun, A. , Lim, E.-P. , & Liu, Y. (2009). On strategies for imbalanced text classification using SVM: A comparative study. Decision Support Systems, 48, 191201.

Sustrova, 2016 Sustrova, T. (2016). An artificial neural network model for a wholesale company's order-cycle management. International Journal of Engineering Business Management. doi:10.5772/63727

Syam and Sharma, 2018 Syam, N. , & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135146.

Thieme et al., 2000 Thieme, J. , Song, M. , & Calantone, R. (2000). Artificial neural network decision support systems for new product development project selection. Journal of Marketing Research, 37(4), 499507.

Thiesing and Vornberger, 1997 Thiesing, F. M. , & Vornberger, O. (1997). Sales forecasting using neural networks. Proceedings of International Conference on Neural Networks (ICNN’97) , Houston, TX, USA (Vol. 4; pp. 21252128). doi:10.1109/ICNN.1997.614234

Thomassey and Fiordaliso, 2006 Thomassey, S. , & Fiordaliso, A. (2006). A hybrid sales forecasting system based on clustering and decision trees. Decision Support Systems, 42, 408421.

Thompson et al. Thompson, W. , Li, H. , & Bolen, A. Artificial intelligence, machine learning, deep learning and beyond: Understanding AI technologies and how they lead to smart applications. Retrieved from https://www.sas.com/en_us/insights/articles/big-data/artificial-intelligence-machine-learning-deep-learning-and-beyond.html

Thrasher, 1991 Thrasher, R. (1991). Cart: A recent advance in tree-structured list segmentation methodology. Journal of Direct Marketing, 5(1), 3547.

Tirenni et al., 2007 Tirenni, G. , Kaiser, C. , & Herrmann, A. (2007). Applying decision trees for value-based customer relations management: Predicting airline customers' future values. Database Marketing & Customer Strategy Management, 14(2), 130142.

Tirunillai and Tellis, 2014 Tirunillai, S. , & Tellis, G. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using Latent Dirichlet allocation. Journal of Marketing Research, LI, 463479.

Toubia et al., 2004 Toubia, O. , Hauser, J. R. , & Simester, D. I. (2004). Polyhedral methods for adaptive choice-based conjoint analysis. Journal of Marketing Research, 41, 116131.

Urban et al., 1984 Urban, G. L. , Johnson, P. L. , & Hauser, J. R. (1984). Testing competitive market structures. Marketing Science, 3(Spring), 83112.

van der Putten and van Someren, 2000 van der Putten, P. , & van Someren, M. (2000). CoIL challenge 2000: The insurance company case. Published by Sentient Machine Research, Amsterdam. Also, a Leiden Institute of Advanced Computer Science Technical Report 2000-09. June 22, 2000. Retrieved from http://liacs.leidenuniv.nl/∼puttenpwhvander/tic.html

Van Heerde et al., 2001 Van Heerde, H. J. , Leeflang, P. S. H. , & Wittink, D. R. (2001). Semiparametric analysis to estimate the deal effect curve. Journal of Marketing Research, 38(May), 197215.

Vapnik, 1989 Vapnik, V. N. (1989). Statistical learning theory. New York: Wiley-Interscience. ISBN 978-0-471-03003-4.

Verbeke et al., 2012 Verbeke, W. , Dejaeger, K. , Martens, D. , Hur, J. , & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research, 218, 211229.

West et al., 1997 West, P. , Brockett, P. , & Golden, L. (1997). A comparative analysis of neural networks and statistical methods for predicting consumer choice. Marketing Science, 16(4), 370391.

Xie et al., 2009 Xie, Y. , Li, X. , Ngai, E. W. T. , & Yin, W. (2009). Customer churn prediction using improved balanced random forests. Expert Systems with Applications, 36, 54455454.

Yao et al., 1998 Yao, J. , Teng, N. , Poh, T. , & Tan, C. (1998). Forecasting and analysis of marketing data using neural networks. Journal of Information Science and Engineering, 14(4), 843862.

Zahavi and Levin, 1997 Zahavi, J. , & Levin, N. (1997). Applying neural computing to target marketing. Journal of Direct Marketing, 11(1), 522.

Zhang et al., 2009 Zhang, Y. , Dang, Y. , Chen, H. , Thurmond, M. , & Larson, C. (2009). Automatic online news monitoring and classification for syndromic surveillance. Decision Support Systems, 47(4), 508517.

Zhang, 2004 Zhang, P. (2004). Neural networks in business forecasting. Hershey, PA: IRM Press.