Qiyin Lin, Zhengying Wei, Ning Wang and Yubin Zhang
The purpose of this paper is to study the influences of recess configurations on the performances of high-speed hybrid journal bearing. Hybrid journal bearing earns increasing…
Abstract
Purpose
The purpose of this paper is to study the influences of recess configurations on the performances of high-speed hybrid journal bearing. Hybrid journal bearing earns increasing attention in high-speed machine tool spindle owing to its intrinsic outstanding performances of low temperature rise and high stability.
Design/methodology/approach
To investigate the coupled effects of temperature, turbulence and the interaction between lubricant and journal/bearing bush, a thermal fluid-structure interaction approach is presented and validated by the experimental results.
Findings
Ladder-type recess has excellent tribological characteristics in decreasing temperature rise, improving stability and inhibiting cavitation, which are all beneficial to improve the performances of high-speed spindle system.
Originality/value
This work can be a valuable guide for the future high-speed hybrid journal bearing design.
Details
Keywords
Vivek Kumar and Satish C. Sharma
This paper aims to numerically investigate the influence of magnetic field and recess configurations on performance of hydrostatic thrust bearing. Electrically conducting fluid is…
Abstract
Purpose
This paper aims to numerically investigate the influence of magnetic field and recess configurations on performance of hydrostatic thrust bearing. Electrically conducting fluid is supplied to bearing, operating in external magnetic field. Influences of recess geometric shapes (circular, rectangular, elliptical and triangular) and restrictor (capillary and orifice) are numerically examined on stead-state and dynamic performance characteristics of bearing.
Design/methodology/approach
Numerical simulation of hydrostatic thrust bearing has been performed using finite element (FE) method based on Galerkin’s technique. An iterative source code based on FE approach, Gauss–Siedel and Newton–Raphson method is used to compute steady-state and dynamic performance indices of bearings.
Findings
The presence of magnetic field is observed to be enhancing load-carrying capacity and damping coefficient of bearings. The effect is observed to be more pronounced at low value of Hartmann number, because of the saturation effect observed at higher values of Hartmann number. The enhancement in abovementioned performance indices is observed to be highly dependent on geometry of recess and restrictor.
Research limitations/implications
This study presents a FE-based approach to numerically simulate a hydrostatic thrust bearing. It will help bearing designers and academician in selecting an appropriate recess shape, restrictor and strength of magnetic field, for obtaining optimum performance from hydrostatic thrust bearing.
Originality/value
The present investigation provides a coupled solution of modified Reynolds equation and restrictor equation, which is essential for accurately predicting the performance of hydrostatic thrust bearings.
Details
Keywords
R.K. Duvedi, Manpreet Singh and V.K. Jadon
The present work aims to predict accurately the bearing design data for non‐recessed hybrid journal bearings, considering the effect of non‐Newtonian behavior of lubricant for…
Abstract
Purpose
The present work aims to predict accurately the bearing design data for non‐recessed hybrid journal bearings, considering the effect of non‐Newtonian behavior of lubricant for different symmetric and non‐symmetric bearing geometric configurations.
Design/methodology/approach
The simultaneous solution of generalized Reynold's equation governing the laminar flow of incompressible lubricant and the equation of flow of lubricant through the capillary restrictor, considering variable viscosity of lubricant following the “Power law”, has been carried out using FEM. For a given set of bearing geometric, operating parameters and for given external vertical load, the values of various performance characteristics have been obtained for a range of values of power law index, after establishing the journal center equilibrium position, the analysis for which has been elaborately explained.
Findings
The results obtained have been presented graphically for various bearing performance characteristics. It has been observed that with decrease in power law index “n”(0<n≤1), the value of h¯min and load carrying capacity decreases, while bearing flow rate increases for all configuration. The load‐carrying capacity of asymmetric configurations is better and stable over entire range of restrictor design parameter. Bearing configuration with land width ratio = 0.25 and aspect ratio = 1.0, having two rows of holes and six holes in each row, will be better suited for high‐load support, as it has maximum value of minimum fluid film thickness, moderate value of bearing flow and value of attitude angle is almost constant.
Originality/value
The performance characteristics of journal bearing have been presented for a wide range of values of power law index and for different values of restrictor design parameter for capillary restrictor, after establishing the journal center equilibrium position. The comparison of the different symmetric and non‐symmetric journal‐bearing configurations to find the best geometric configuration at different operating conditions, considering the effect of non‐Newtonian behavior of lubricant, represents the originality of the work.
Details
Keywords
Hem Chander Garg and Vijay Kumar
The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load, besides…
Abstract
Purpose
The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load, besides their relative simplicity in manufacturing. Most of the research work pertaining to non-recessed journal bearing assumes standard symmetric and asymmetric configurations. However, many more configurations are possible by changing the position of slot which may improve the performance of the slot-entry journal bearing. In the present work study of static performance characteristics of slot-entry journal bearing of different configuration has been carried out. The paper aims to discuss these issues.
Design/methodology/approach
FEM has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The performance characteristics of slot-entry hybrid journal bearings are computed by developing a computer program.
Findings
The simulated results of bearing characteristics parameters in terms of minimum fluid-film thickness and bearing flow have been presented for the wide range of various values of non-linearity factor and external load. It is found that there is an increase in the oil requirement for slot-entry hybrid journal bearing with the specified operating and geometric parameters, when the viscosity of the lubricant decreases due to the non-Newtonian behavior of the lubricant. The effect of the decrease in the viscosity of the lubricant due to non-Newtonian behavior of the lubricant diminishes the attitude angle. The computed performance characteristics are helpful for the bearing designer while choosing a particular configuration of bearing.
Research limitations/implications
The performance characteristics have been computed by considering the non-Newtonian lubricants. The thermal effects have been ignored in the analysis so as to obviate the mathematical complexity.
Originality/value
Get idea from already published manuscripts.
Details
Keywords
Krishnkant Sahu and Satish C. Sharma
This study aims to deal with the performance of symmetric/asymmetric slot entry hybrid journal bearing system considering the effect of three dimensional irregularities in the…
Abstract
Purpose
This study aims to deal with the performance of symmetric/asymmetric slot entry hybrid journal bearing system considering the effect of three dimensional irregularities in the analysis.
Design/methodology/approach
The asperity profile of three-dimensional irregularities has been modeled in both circumferential and axial directions. To compute the bearing performance characteristics parameter, finite element formulation of governing Reynolds equation has been derived using Galerkin’s technique.
Findings
Based on the numerically simulated results, it has been observed that the three-dimensional irregularities enhance the value of minimum fluid film thickness (h̄min), lubricant flow (Q̄) and fluid film damping coefficients (C̄11,C̄22) approximately by order of magnitude of 24-26, 43-51 and 18-66 per cent, respectively, for the case of asymmetric slot entry configuration. Whereas, the values of fluid film stiffness coefficients (S̄11,S̄22) and threshold speed (ω̄th) reduces approximately by order of 1-6 and 0-3 per cent, respectively, for the case of symmetric slot entry configuration.
Originality/value
The present paper describes that the influence of three-dimensional irregularities on bearing surface on the performance of slot entry hybrid journal bearing is original in literature gaps. The numerically simulated results presented in this study are expected to be quite useful to the bearing designers.
Details
Keywords
Vivek Kumar, Satish C. Sharma and Kuldeep Narwat
Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are…
Abstract
Purpose
Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are carried out to examine the influence of surface texture on performance of hybrid thrust bearing system. This paper aims to determine optimum attributes of micro-grooves for thrust bearing operating in hybrid mode.
Design/methodology/approach
An iterative source code based on finite element formulation of Reynolds equation has been developed to numerically simulate flow of lubricant through the bearing. Mass-conserving algorithm based on Jakobsson–Floberg–Olsson (JFO) condition has been used to numerically capture cavitation phenomenon in the bearing. Gauss Siedel method has been used to obtain steady state performance parameters of the bearings.
Findings
A parametric study has been performed to improve the load supporting capacity of the bearing by optimizing micro-groove attributes and configuration. It is noticed that use of full-section micro-groove is beneficial in improving the efficiency of bearing by enhancing the fluid film reaction and reducing the film frictional power losses.
Originality/value
This study is helpful in examining the usefulness of micro-groove textured surfaces in hybrid thrust bearing applications.
Details
Keywords
The purpose of this paper is to study theoretically the combined influence of journal misalignment and wear on the performance of a hole‐entry hybrid journal bearing system. The…
Abstract
Purpose
The purpose of this paper is to study theoretically the combined influence of journal misalignment and wear on the performance of a hole‐entry hybrid journal bearing system. The bearing is assumed to be operating in a turbulent regime.
Design/methodology/approach
The modified Reynolds equation based on Constantinescu lubrication theory has been solved by using finite element method together with orifice and capillary restrictors flow equations as a constrain together with appropriate boundary conditions.
Findings
It has been observed that for a symmetric hole‐entry journal bearing configuration the value of h¯min is more for the bearing compensated by orifice restrictor as compared to capillary restrictor when bearing operates in turbulent regime under worn/unworn conditions. From the point of view of stability threshold speed ω¯th, the reduction in the value of ω¯th for capillary compensated bearing is around −3.89 percent whereas for orifice compensated bearing it is −7.85 percent when misaligned worn bearing is operating in turbulent regime.
Originality/value
The present work is original of its kind, in case of misaligned hole‐entry worn journal bearing. The results are quite useful for the bearing designer.
Details
Keywords
Waheed Ur Rehman, Xinhua Wang, Yingchun Chen, Xiaogao Yang, Zia Ullah, Yiqi Cheng and Marya Kanwal
The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing…
Abstract
Purpose
The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing algorithms.
Design/methodology/approach
Active lubrication has ability to overcome the unpredictable harsh environmental conditions which often lead to failure of capillary controlled traditional hydrostatic journal bearing. The research develops a mathematical model for a servo feedback-controlled hydrostatic journal bearing and dynamics of model is analyzed with different control techniques. The fractional-order PID control system is tuned by using particle swarm optimization and Nelder mead optimization techniques with the help of using multi-objective performance criteria.
Findings
The results of the current research are compared with previously published theoretical and experimental results. The proposed servo-controlled active bearing system is studied under a number of different dynamic situations and constraints of variable spindle speed, external load, temperature changes (viscosity) and variable bearing clearance (oil film thickness). The simulation results show that the proposed system has better performance in terms of controllability, faster response, stability, high stiffness and strong resistance.
Originality/value
This paper develops an accurate mathematical model for servo-controlled hydrostatic bearing with fractional order controller. The results are in excellent agreement with previously published literature.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0272
Details
Keywords
Brief Details of Materials, Components and Equipment Produced by a Number of Companies in Support of the Hawker Siddeley Trident Programme. THE basic design philosophy…
Abstract
Brief Details of Materials, Components and Equipment Produced by a Number of Companies in Support of the Hawker Siddeley Trident Programme. THE basic design philosophy, development background, aerodynamic design, structural design, autoland system, flying controls systems, interior arrangements, and operational features of the Hawker Siddeley Trident have been dealt with in considerable detail in the preceding articles. The object of this final article is to provide ‘back‐up’ information, especially on the systems side, but whereas the earlier articles have been largely concerned with overall systems and philosophies, it is intended to describe here specific materials, components and equipment produced by a number of companies in support of the Trident programme.