Search results

1 – 2 of 2
Article
Publication date: 20 March 2018

Ilhem Ghodbane, Rochdi Kherrrat, Saida Zougar, Rim Lamari, Redouane Haddadji and Mohamed Saleh Medjram

The purpose of this work is to explore electrical properties of an electrochemical sensor designed for the detection of malachite green (MG) present in an aqueous solution.

Abstract

Purpose

The purpose of this work is to explore electrical properties of an electrochemical sensor designed for the detection of malachite green (MG) present in an aqueous solution.

Design/methodology/approach

The present sensor consists in the spatial coupling of a polymeric membrane and an ion-sensitive electrode (platinum electrode). The preparation of the polymeric membrane involves the incorporation of an ionophore (D2HPA), a polymer (polyvinylchloride [PVC]) and a plasticizer (dioctyl phthalate [DOP]). Several techniques have been used to characterize this sensor: the cyclic voltammetry, the electrochemical impedance spectroscopy and the optical microscopy. The sensibility, the selectivity and the kinetic study of a modified platinum electrode have been evaluated by cyclic voltammetry.

Findings

The obtained results reveal the possibility of a linear relationship between the current of reduction peaks and MG concentration. A linear response was obtained in a wide-concentration range that stretches from 10−5 to 10−13 mol L−1, with a good correlation coefficient (0.976) and a good detection limit of 5.74 × 10−14 mol L−1 (a signal-to-noise ratio of 3). In addition, the voltammetric response of modified electrode can be enhanced by adding a layer of Nafion membrane. Under this optimal condition, a linear relationship was obtained, with a correlation coefficient of 0.986 and a detection limit of 1.92 × 10−18 mol L−1.

Originality/value

In the present research, a convenient, inexpensive and reproducible method for the detection of MG was developed. The developed sensor is capable of competing against the conventional techniques in terms of speed, stability and economy.

Article
Publication date: 14 November 2024

Sihem Kherraf, Malika Foudia, Nour El Houda Sobhi, Zohra Djetoui and Mohamed Salah Medjram

The corrosion of cupronickel and copper alloys in marine and chloride environments presents significant challenges in the chemical and petrochemical industries. This paper aims to…

Abstract

Purpose

The corrosion of cupronickel and copper alloys in marine and chloride environments presents significant challenges in the chemical and petrochemical industries. This paper aims to investigate the corrosion inhibition of cupronickel alloy (Cu-10Ni) in a sodium chloride medium using expired amlodipine as a corrosion inhibitor. The use of this drug in its expired form could reduce the costs of corrosion and help mitigate the accumulation of pharmaceutical waste.

Design/methodology/approach

The inhibitory action was evaluated using a weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of temperature on the inhibition performance was also studied.

Findings

The results of these experiments demonstrated that the drug amlodipine effectively inhibited the corrosion of cupronickel alloy in chloride solutions. The corrosion rate of cupronickel was found to decrease with increasing inhibitor concentration and to increase with rising temperature. A maximum inhibition efficiency of 91.92 was achieved with an inhibitor concentration of 0.025 g/L at 298 K. Adsorption of the inhibitor followed the Langmuir adsorption isotherm. Polarization studies indicated that the expired drug acted as a mixed inhibitor. SEM and AFM analyses confirmed that the surface morphology of cupronickel specimens was significantly improved in the presence of the inhibitor.

Practical implications

Amlodipine can be conveniently used to mitigate problems with the corrosion of copper alloys in chloride environments.

Originality/value

Amlodipine is evaluated as a novel and effective corrosion inhibitor for cupronickel alloy in neutral chloride environments.

Details

Anti-Corrosion Methods and Materials, vol. 72 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 2 of 2