Olivia Rossi and Arvind Chandrasekaran
The purpose of this paper is to answer this question by discussing the practicality of implementing microreactor technology towards large-scale renewable energy generation, as…
Abstract
Purpose
The purpose of this paper is to answer this question by discussing the practicality of implementing microreactor technology towards large-scale renewable energy generation, as well as provide an incentive for future researchers to utilize microreactors as a useful alternative tool for green energy production. However, can microreactors present a viable solution for the generation of renewable energy to tackle the on-going global energy crisis?
Design/methodology/approach
In this paper, the practicality of implementing microreactor technology toward large-scale renewable energy generation is discussed. Specific areas of interest that elucidate considerable returns of microreactors toward renewable energy production are biofuel synthesis, hydrogen conversion and solar energy harvesting.
Findings
It is believed that sustained research on microreactors can significantly accelerate the development of new energy production methods through renewable sources, which will undoubtedly aid in the quest for a greener future.
Originality/value
This work aims to provide a sound judgement on the importance of research on renewable energy production and alternative energy management methods through microreactor technology, and why future studies on this topic should be highly encouraged. The relevance of this opinion paper lies in the idea that microreactors are an innovative concept currently used in engineering to significantly accelerate chemical reactions on microscale volumes; with the feasibility of high throughput to convert energy at larger scales with much greater efficiency than existing energy production methods.
Details
Keywords
Karol Malecha, Elżbieta Remiszewska and Dorota G Pijanowska
The purpose of this paper is to focus on the technology and performance of the miniature microfluidic module for urea determination. The presented module was made using…
Abstract
Purpose
The purpose of this paper is to focus on the technology and performance of the miniature microfluidic module for urea determination. The presented module was made using low-temperature co-fired ceramics (LTCC). It shows the possibility for the integration of the bioreceptor layers with structures that have been fabricated using modern microelectronic technology.
Design/methodology/approach
The presented microfluidic module was fabricated using LTCC technology. The possibility for the fabrication of an enzymatic microreactor in a multilayer ceramic substrate, made of CeramTec glass ceramic (GC) material systems with an integrated thick-film heater, is studied. Different configurations of the LTCC/heater materials (gold, silvers and palladium-silver) are taken into account. The performance of the LTCC-based microfluidic module with the integrated heater and immobilized enzyme was examined experimentally.
Findings
A compatible material for the heater embedded in the CeramTec GC-based structures was found. The preliminary measurements made for the test solution containing various concentrations of urea have shown stability (for seven days of operation) and a relatively high signal-to-noise ratio (above 3 pH units) for the microreactor’s output signal.
Research limitations/implications
The presented research is a preliminary work which is focused on the fabrication of the LTCC-based microfluidic module, with an integrated heater and immobilized enzyme for urea determination. The device was positively tested using a model reaction of the hydrolysis of urea. However, urea concentration in real (biological) fluid should also be measured.
Practical implications
The development of the LTCC-based microfluidic module for urea determination provides opportunity for the construction of a lab-on-chip, or μTAS-type system, for fast medical diagnoses and the continuous monitoring of various biochemical parameters, e.g. for estimating the effectiveness of hemodialysis.
Originality/value
This paper shows the design, fabrication and performance of the novel microfluidic module for urea determination, made with LTCC technology.
Details
Keywords
Darko Belavič, Marko Hrovat, Kostja Makarovič, Gregor Dolanč, Andrej Pohar, Stanko Hočevar and Barbara Malič
– The purpose of this paper is to present the research activity and results to research and development society on the field of ceramic microsystems.
Abstract
Purpose
The purpose of this paper is to present the research activity and results to research and development society on the field of ceramic microsystems.
Design/methodology/approach
The chemical reactor was developed as a non-conventional application of low temperature co-fired ceramic (LTCC) and thick-film technologies. In the ceramic reactor with a large-volume, buried cavity, filled with a catalyst, the reaction between water and methanol produces hydrogen and carbon dioxide (together with traces of carbon monoxide). The LTCC ceramic three-dimensional (3D) structure consists of a reaction chamber, two inlet channels, an inlet mixing channel, an inlet distributor, an outlet collector and an outlet channel. The inlet and outlet fluidic barriers for the catalyst of the reaction chamber are made with two “grid lines”.
Findings
A 3D ceramic structure made by LTCC technology was successfully designed and developed for chemical reactor – methanol decomposition.
Research limitations/implications
Research activity includes the design and the capability of materials and technology (LTCC) to fabricate chemical reactor with large cavity. But further dimensions-scale-up is limited.
Practical implications
The technology for the fabrication of LTCC-based chemical reactor was developed and implemented in system for methanol decomposition.
Originality/value
The approach (large-volume cavity in ceramic structure), which has been developed, can be used for other type of reactors also.
Details
Keywords
Hui Zhang and Xianfei Liu
This study aims to propose the increase of heat dissipation requirements of modern electronic equipment and the fast development of micro-scale manufacturing technologies. The…
Abstract
Purpose
This study aims to propose the increase of heat dissipation requirements of modern electronic equipment and the fast development of micro-scale manufacturing technologies. The heat transfer mechanism is studied in-depth, especially for its pattern of secondary flow caused by the repeated inversion of centrifugal force. Effects of η on the frictional pressure drop and average Nusselt number are studied and the performance of such microchannel heat sink with various bend amplitudes is comprehensively evaluated. These results can provide important insight into the optimal design of this novel design configuration for microelectronics cooling.
Design/methodology/approach
A three-dimensional model based on the finite volume approach and SIMPLEC algorithm is performed to test an innovative serpentine microchannel, which behaves differently from conventional serpentine microchannel due to the significant effect of centrifugal force inversion.
Findings
The effect of centrifugal force significantly influences the flow and thermal fields which are responsible for the enhancement in heat transfer coefficient. The number, size and intensity of vortices increase with increasing Re, and the vortices are reformed at every change of the geometry in a periodic fashion. The serpentine microchannel studies more effectively at larger bend amplitude. Pressure fluctuations and temperature variation are greater with increasing bend amplitude.
Practical implications
Several techniques have been developed to augment single-phase convective heat transfer in channels. One technique is to use a serpentine channel that enhances the heat transfer due to flow mixing and periodic interruption of thermal boundary layers. This technique has been applied to micro-heat exchangers, thermal regenerators and mini/microreactors.
Social implications
The optimal design of this novel design configuration for microelectronics cooling can be attained. It will become an effective cooling technology for solving the increasing of heat dissipation requirements of modern electronic equipment.
Originality/value
The flow and heat transfer characteristics are first presented for the circular serpentine microchannel made up of alternate U-bends without interposed straight segments. The present study first examines the effect of such centrifugal force inversion on velocity contour, pressure distribution and temperature distribution. The patterns of secondary flow along the flow passage caused by the repeated inversion of centrifugal force are further studied in depth. The effect of bend amplitude on the flow and heat transfer is explored and the performance of such microchannel heat sink has been comprehensively evaluated.
Details
Keywords
Regina Knitter, Werner Bauer, Dieter Göhring and Peter Risthaus
Conventional shaping processes for ceramics are mostly based on a powder‐technological molding process using a negative mold and subsequent thermal compaction. Especially for…
Abstract
Conventional shaping processes for ceramics are mostly based on a powder‐technological molding process using a negative mold and subsequent thermal compaction. Especially for prototypes and small lot series of microcomponents the outlay for molds are the major costing factor. Consequently the use of rapid prototyping (RP) processes can decisively reduce the costs and time in product development of ceramic microcomponents. In spite of the fact, that a large number of freeform fabrication techniques for different materials were developed in recent years, most generative techniques of ceramics still have different drawbacks for the fabrication of prototypes and often exhibit limited resolution compared to those of polymers. The combination of RP techniques such as micro stereolithography and ceramic injection molding in a RP process chain can fill in the gap between the limited applicability of solid freeform fabrication of ceramics and the restricted material properties of polymers.
Details
Keywords
Fully developed Casson fluid flow through vertical microchannel is deliberated in the presence of thermal radiation. The two predominant features of micro scale phenomenon such as…
Abstract
Purpose
Fully developed Casson fluid flow through vertical microchannel is deliberated in the presence of thermal radiation. The two predominant features of micro scale phenomenon such as velocity slip and temperature jump are considered. The paper aims to discuss this issue.
Design/methodology/approach
The governing equations of the physical phenomenon are solved using Runge–Kutta–Fehlberg fourth fifth order method.
Findings
The outcome of the present work is discussed through graphs. This computation shows that entropy generation rate decreases with enhancing wall ambient temperature difference ratio and fluid wall interaction parameter. Also, it is found that Bejan number is fully retarded with rise in fluid wall interaction parameter. Enhancement in heat transfer or Nusselt number is achieved by increasing the wall ambient temperature ratio and fluid wall interaction parameter.
Originality/value
Casson liquid flow through microchannel is analyzed by considering temperature jump and velocity slip. This computation shows that entropy generation rate decreases with enhancing wall ambient temperature difference ratio.
Details
Keywords
Weiqiang Kong, Qiuwan Shen, Naibao Huang, Min Yan and Shian Li
The purpose of this study is to investigate the effect of catalyst distribution in the combustion catalytic layer on heat and mass transport characteristics of the auto-thermal…
Abstract
Purpose
The purpose of this study is to investigate the effect of catalyst distribution in the combustion catalytic layer on heat and mass transport characteristics of the auto-thermal methanol steam reforming microchannel reactor.
Design/methodology/approach
Computational fluid dynamics (CFD) method is used to study four different gradient designs. The corresponding distributions of temperature, species and chemical reaction rate are provided and compared.
Findings
The distributions of species, temperature and chemical reaction rate are significantly affected by the catalyst distribution in the combustion catalytic layer. A more uniform temperature distribution can be observed when the gradient design is used. Meanwhile, the methanol conversion rate is also improved.
Practical implications
This work reveals the effect of catalyst distribution in the combustion catalytic layer on heat and mass transport characteristics of the auto-thermal methanol steam reforming microchannel reactor and provides guidance for the design of reactors.
Originality/value
The temperature uniformity and hydrogen production performance can be improved by the gradient design in the combustion catalytic layer.
Details
Keywords
Wojciech Kubicki, Aung Thiha, Tymon Janisz, Karunan Joseph, Nurul Fauzani Jamaluddin, Marc Madou, Rafał Walczak, Goran M. Stojanovic and Fatimah Ibrahim
This study aims to use an additive process for the first time to develop a microfluidic device that uses centrifugal technique for precise and repeatable generation of…
Abstract
Purpose
This study aims to use an additive process for the first time to develop a microfluidic device that uses centrifugal technique for precise and repeatable generation of microdroplets. Droplets have versatile applications in life sciences, but so far centrifugal devices for their production have been made mainly using standard subtractive techniques. This study focused on evaluating the applicability of 3D printing technology in the development of centrifugal microfluidic devices and investigating their properties and future applications.
Design/methodology/approach
First, the background of this interdisciplinary research, including the principle of droplet microfluidics and the centrifugal technique, is explained. The developed device has the form of a disc (similar to an audio CD), containing an integrated microfluidic system for droplet generation. The disc is rotated at a specific spin profile to induce controlled liquid flow and accurate production of oil-in-water microdroplets. The device was fabricated using material jetting technology. The design, operation principles, printing process parameters and post-processing steps are explained in detail.
Findings
The device was thoroughly characterised, including its mechanical properties, the impact of chemical treatment and the flow measurement of the liquids. The study confirms that the disc can be applied to produce various emulsions using centrifugal force alone. 3D printing technology enables potential mass production and other applications of the device.
Originality/value
The 3D printing process allowed for easy design, fabrication and duplication of the device. Compared to standard PMMA discs, a simpler fabrication protocol and a more flexible and monolithic structure were obtained. The device can be adapted to other microfluidic processes in a lab with high potential for point-of-care applications.
Details
Keywords
Maryam Fatima, Ayesha Sohail, Youming Lei, Sadiq M. Sait and R. Ellahi
Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of…
Abstract
Purpose
Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of enzyme diffusion within the tissue matrix and enhance the nano system performance by means of the effectiveness of enzymatic functions. The diffusion phenomena are also documented, providing chemical insights into the complex processes governing enzyme movement.
Design/methodology/approach
A computational analysis is used to develop and simulate an optimal control model using numerical algorithms, systematically regulating enzyme concentrations within the tissue scaffold.
Findings
The accompanying videographic footages offer detailed insights into the dynamic complexity of the system, enriching the reader’s understanding. This comprehensive exploration not only contributes valuable knowledge to the field but also advances computational analysis in tissue engineering and biomimetic systems. The work is linked to biomolecular structures and dynamics, offering a detailed understanding of how these elements influence enzymatic functions, ultimately bridging the gap between theoretical insights and practical implications.
Originality/value
A computational predictive model for nanozyme that describes the reaction diffusion dynamics process with enzyme catalysts is yet not available in existing literature.
Details
Keywords
Maziar Dehghan, Zahra Azari Nesaz, Abolfazl Pourrajabian and Saman Rashidi
Aiming at finding the velocity distribution profile and other flow characteristic parameters such as the Poiseuille (Po) number, this study aims to focus on the three-dimensional…
Abstract
Purpose
Aiming at finding the velocity distribution profile and other flow characteristic parameters such as the Poiseuille (Po) number, this study aims to focus on the three-dimensional forced convective flow inside rectangular ducts filled with porous media commonly used in air-based solar thermal collectors to enhance the thermal performance. The most general model for the fluid flow (i.e. the non-linear Darcy–Brinkman–Forchheimer partial differential equation subjected to slip and no-slip boundary conditions) is considered.
Design/methodology/approach
The general governing equations are solved analytically based on the perturbation technique and the results are validated against numerical simulation study based on a finite-difference solution over a non-uniform but structured grid.
Findings
The analytical velocity distribution profile based on exponential functions for the above-mentioned general case is obtained, and accordingly, expressions for the Po are introduced. It is found that the velocity distribution tends to be uniform by increasing the aspect ratio of the duct. Moreover, a criterion for considering/neglecting the nonlinear drag term in the momentum equation (i.e. the Forchheimer term) is proposed. According to the sensitivity analysis, results show that the nonlinear drag term effects on the Nusselt number are important only in porous media with high Darcy numbers.
Originality/value
A general analytic solution for three-dimensional forced convection flows through rectangular ducts filled with porous media for the general model of Darcy–Brinkman–Forchheimer and the general boundary condition including both no-slip and slip-flow regimes is obtained. An analytic expression to calculate Po number is obtained which can be practical for engineering estimations and a basis for validation of numerical simulations. A criterion for considering/neglecting the nonlinear drag term in the momentum equation is also introduced.