Rong Song, Xiaohui Jiao and Long Lin
The purpose of this paper is to investigate the effects of nano‐titanium dioxide and nano‐silicon dioxide particles on the mechanical and antimicrobial properties of denture base…
Abstract
Purpose
The purpose of this paper is to investigate the effects of nano‐titanium dioxide and nano‐silicon dioxide particles on the mechanical and antimicrobial properties of denture base resin.
Design/methodology/approach
Nano‐titanium dioxide and nano‐silicon dioxide particles were introduced to heat‐curing denture base resin to prepare composites. Electronic universal testing machine and friction tester were used to test tensile strength and frictional resistance properties of the samples prepared, respectively; also, film adhesion method was used to test the in vitro antimicrobial activity against Candida albicans and Streptococcus mutans.
Findings
Addition of nano‐titanium dioxide particles could improve the antimicrobial property of denture base resin, and addition of nano‐silicon dioxide particles could improve the tensile strength and frictional resistance of denture base resin. Mixture of the two nano‐particles, at a certain ratio, could improve the tensile strength, frictional resistance and antimicrobial property of denture base resin to a certain extent.
Practical implications
Nano‐titanium dioxide and nano‐silicon dioxide denture base resin composites were obtained. The mechanical and antimicrobial properties of the composites were improved compared to the raw denture base resin.
Originality/value
Nano‐titanium dioxide and nano‐silicon dioxide denture base resin composites with excellent performance could be obtained. Longer service life, greater hardness and clearness helped improve the patients' quality of life. Limited work with respect to the improved denture base resin was performed, which could form the theme of a future study. The outcomes of the research reported here set a new milestone in the field of denture base resin.
Details
Keywords
A.O. Mack and J.A. von Fraunhofer
Partial denture bases are often constructed from metallic materials because of the greater strength and rigidity of metals compared with polymeric substances such as…
Abstract
Partial denture bases are often constructed from metallic materials because of the greater strength and rigidity of metals compared with polymeric substances such as polymethylmeth‐acrylate. The primary choice of metal for this purpose has been gold and gold alloys. More recently other systems such as the stainless steels and cobalt‐chromium alloys have been used. Whilst yellow gold, i.e. alloys containing at least 60% gold, has near‐ideal physical properties, it has one major disadvantage in being very costly. A further criticism, although infrequently raised, is the colour, which some patients find too obtrusive. The cost of the base alloy can be reduced by alloying gold with palladium and silver to produce the so‐called white golds. These materials are some 50% lower in cost than yellow gold, are grey in colour but have rather inferior mechanical properties. This is clearly shown by Table 1.
Bo Gao, Jiang Wu, Xianghui Zhao and Hua Tan
This paper aims to improve the efficiency and the quality of metal dental prostheses, reporting on the first patient‐fitted titanium (Ti) complete denture base plate fabricated by…
Abstract
Purpose
This paper aims to improve the efficiency and the quality of metal dental prostheses, reporting on the first patient‐fitted titanium (Ti) complete denture base plate fabricated by integrating the technologies of computer‐aided design and computer‐aided manufacture (CAD/CAM) and laser rapid forming (LRF).
Design/methodology/approach
To make a complete Ti denture base plate, the traditional lost‐wax‐casting technique is commonly used in dentistry. In order to simplify this labor‐intensive process, a new method combined with LRF was invented. Initially, a maxillary edentulous plaster cast was converted to point cloud data by laser scanning system. Subsequently, point cloud data were reconstructed into a 3D solid digital cast, which is stored in standard triangulation language format. Thereafter the 3D denture base was sliced electronically into a sequence of layers defining the regions of the component and, based on it, the complete Ti denture base plate was built layer‐by‐layer using a laser additive manufacturing technology.
Findings
After CAD/CAM/LRF process, the Ti denture base plate was designed and successfully fabricated layer‐by‐layer. After the traditional dental finishing techniques, the complete Ti denture base plate was made and assessed by clinician and patient. The clinical evaluation on quality of fit was judged to be acceptable.
Originality/value
The CAD/CAM/LRF system is a potential candidate to replace the traditional lost‐wax‐casting technique and provides a new platform for the design and manufacturing of custom‐made Ti denture plates and other restorations especially for implant substructure and framework of partial removal of denture.
Details
Keywords
This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…
Abstract
This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.
Details
Keywords
Gurpartap Singh, Rupinder Singh and S.S. Bal
The purpose of this study is to investigate dimensional accuracy (Δd), surface roughness (Ra) and micro hardness (HV) of partial dentures (PD) prepared with synergic combination of…
Abstract
Purpose
The purpose of this study is to investigate dimensional accuracy (Δd), surface roughness (Ra) and micro hardness (HV) of partial dentures (PD) prepared with synergic combination of fused deposition modelling (FDM) assisted chemical vapour smoothing (CVS) patterns and conventional dental casting (DC) from multi-factor optimization view point.
Design/methodology/approach
The master pattern for PD was prepared with acrylonitrile butadiene styrene (ABS) thermoplastic on FDM set-up (one of the low cost additive manufacturing process) followed by CVS process. The final PD as functional prototypes was casted with nickel–chromium-based (Ni-Cr) alloy by varying Ni% (Z). The other input parameters were powder to water ratio P/W (X) and pH value (Y) of water used.
Findings
The results of this study suggest that for controlling the Δd and Ra of the PD, most important factor is X, followed by Z. For hardness of PD, the most important factor is Z. But from overall optimization viewpoint, the best settings are X-100/12, Y-10 and Z-61% (in Ni-Cr alloy). Further, based upon X-bar chart (for HV), the FDM-assisted DC process used for preparation of PD is statistically controlled.
Originality/value
This study highlights that PD prepared with X-100/12, Y-10 and Z-61% gives overall better results from multi-factor optimization view point. Finally, X-bar chart has been plotted to understand the statistical nature of the synergic combination of FDM, CVS and DC.
Details
Keywords
This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…
Abstract
This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.
Details
Keywords
Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy…
Abstract
Purpose
Three-dimensional (3D) printing technologies have gained attention in dentistry because of their ability to print objects with complex geometries with high precision and accuracy, as well as the benefits of saving materials and treatment time. This study aims to explain the principles of the main 3D printing technologies used for manufacturing dental prostheses and devices, with details of their manufacturing processes and characteristics. This review presents an overview of available 3D printing technologies and materials for dental prostheses and devices.
Design/methodology/approach
This review was targeted to include publications pertaining to the fabrication of dental prostheses and devices by 3D printing technologies between 2012 and 2021. A literature search was carried out using the Web of Science, PubMed, Google Scholar search engines, as well as the use of a manual search.
Findings
3D printing technologies have been used for manufacturing dental prostheses and devices using a wide range of materials, including polymers, metals and ceramics. 3D printing technologies have demonstrated promising experimental outcomes for the fabrication of dental prostheses and devices. However, further developments in the materials for fixed dental prostheses are required.
Originality/value
3D printing technologies are effective and commercially available for the manufacturing of polymeric and metallic dental prostheses. Although the printing of dental ceramics and composites for dental prostheses is promising, further improvements are required.
Details
Keywords
Yanjin Lu, Yiliang Gan, Junjie Lin, Sai Guo, Songquan Wu and Jinxin Lin
The aim of the study is to obtain dense Ni-free CoCrW parts fabricated by selective laser melting (SLM) technique for dental application.
Abstract
Purpose
The aim of the study is to obtain dense Ni-free CoCrW parts fabricated by selective laser melting (SLM) technique for dental application.
Design/methodology/approach
The optimum of processing CoCrW powders was investigated by the varying laser scanning speeds between 200 and 1,500 mm/s with the other parameters fixed as constants. The investigations of density, phase, mechanical property and corrosion resistance were conducted.
Findings
It was found that a maximum relative density of 99.4 per cent was obtained with the preferable laser scanning speed of 700 mm/s; the outcome from the tensile test suggested that the 0.2 per cent yield strength of the specimen fabricated at 700 mm/s satisfied the type 5 criteria in ISO22764 for dental application, whereas the electrochemical test indicated that the specimens fabricated at 700 mm/s existed excellent corrosion resistance. The high precision dental denture could be fabricated by SLM.
Originality/value
In the study, the Ni-free CoCrW parts fabricated by SLM was investigated by the tensile and electrochemical tests. The yield strength, corrosion resistance and margin fit accuracy met requirements for dental application. It was considered that the speed of 700 mm/s with the laser powers of 95 W, the track width of 0.11 mm and the layer thickness of 25 μm are promising candidates for fabricating the CoCrW parts.
Details
Keywords
Kashif Ishfaq, Mudassar Rehman, Ahmed Raza Khan and Yanen Wang
Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more…
Abstract
Purpose
Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more from these aforesaid issues. It is expected that these issues in human beings will ultimately reach 2.1 billion by 2050 worldwide. Furthermore, the increase in traffic accidents in young people throughout the world has significantly emerged the need for artificial implants. Their implantation can act as a substitute for fractured bones or disordered joints. Therefore, this study aims to focus on electron beam melted titanium (Ti)-based orthopaedic implants along with their recent trends in the field.
Design/methodology/approach
The main contents of this work include the basic theme and background of the metal-based additive manufacturing, different implant materials specifically Ti alloys and their classification based on crystallographic transus temperature (including α, metastable β, β and α + β phases), details of electron beam melting (EBM) concerning its process physics, various control variables and performance characteristics of EBMed Ti alloys in orthopaedic and orthodontic implants, applications of EBMed Ti alloys in various load-bearing implants, different challenges associated with the EBMed Ti-based implants along with their possible solutions. Recent trends and shortfalls have also been described at the end.
Findings
EBM is getting significant attention in medical implants because of its minor issues as compared to conventional fabrication practices such as Ti casting and possesses a significant research potential to fabricate various medical implants. The elastic modulus and strength of EBMed ß Ti-alloys such as 24Nb-4Zr-8Sn and Ti-33Nb-4Sn are superior compared to conventional Ti for orthopaedic implants. Beta Ti alloys processed by EBM have near bone elastic modulus (approximately 35–50 GPa) along with improved tribo-mechanical performance involving mechanical strength, wear and corrosion resistance, along with biocompatibility for implants.
Originality/value
Advances in EBM have opened the gateway Ti alloys in the biomedical field explicitly ß-alloys because of their unique biocompatibility, bioactivity along with improved tribo-mechanical performance. Less significant work is available on the EBM of Ti alloys in orthopaedic and orthodontic implants. This study is directed solely on the EBM of medical Ti alloys in medical sectors to explore their different aspects for future research opportunities.
Details
Keywords
Md. Hazrat Ali, Shaheidula Batai and Dastan Sarbassov
This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been…
Abstract
Purpose
This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been made in this field. A comparative study helps to understand the latest development in materials and future prospect of this technology.
Design/methodology/approach
Nevertheless, a large amount of progress still remains to be made. While some of the works have focused on the performances of the materials, the rest have focused on the development of new methods and techniques in additive manufacturing.
Findings
This paper critically evaluates the current 3D printing technologies, including the development and optimizations made to the printing methods, as well as the printed objects. Meanwhile, previous developments in this area and contributions to the modern trend in manufacturing technology are summarized briefly.
Originality/value
The paper can be summarized in three sections. Firstly, the existing printing methods along with the frequently used printing materials, as well as the processing parameters, and the factors which influence the quality and mechanical performances of the printed objects are discussed. Secondly, the optimization techniques, such as topology, shape, structure and mechanical property, are described. Thirdly, the latest development and applications of additive manufacturing are depicted, and the scope of future research in the relevant area is put forward.