Search results
1 – 10 of 157H.M. Manjunatha, S.K. Narasimhamurthy and Zohreh Nekouee
The purpose of this paper is to study the Bertotti–Kasner space-time and its geometric properties.
Abstract
Purpose
The purpose of this paper is to study the Bertotti–Kasner space-time and its geometric properties.
Design/methodology/approach
This paper is based on the features of λ-tensor and the technique of six-dimensional formalism introduced by Pirani and followed by W. Borgiel, Z. Ahsan et al. and H.M. Manjunatha et al. This technique helps to describe both the geometric properties and the nature of the gravitational field of the space-times in the Segre characteristic.
Findings
The Gaussian curvature quantities specify the curvature of Bertotti–Kasner space-time. They are expressed in terms of invariants of the curvature tensor. The Petrov canonical form and the Weyl invariants have also been obtained.
Originality/value
The findings are revealed to be both physically and geometrically interesting for the description of the gravitational field of the cylindrical universe of Bertotti–Kasner type as far as the literature is concerned. Given the technique of six-dimensional formalism, the authors have defined the Weyl conformal
Details
Keywords
Manjunath Manuvinakurake, Uma Gandhi, Mangalanathan Umapathy and Manjunatha M. Nayak
Structures play a very important role in developing pressure sensors with good sensitivity and linearity, as they undergo deformation to the input pressure and function as the…
Abstract
Purpose
Structures play a very important role in developing pressure sensors with good sensitivity and linearity, as they undergo deformation to the input pressure and function as the primary sensing element of the sensor. To achieve high sensitivity, thinner diaphragms are required; however, excessively thin diaphragms may induce large deflection and instability, leading to the unfavorable performances of a sensor in terms of linearity and repeatability. Thereby, importance is given to the development of innovative structures that offer good linearity and sensitivity. This paper aims to investigate the sensitivity of a bossed diaphragm coupled fixed guided beam three-dimensional (3D) structure for pressure sensor applications.
Design/methodology/approach
The proposed sensor comprises of mainly two sensing elements: the first being the 3D mechanical structure made of bulk silicon consisting of boss square diaphragm along with a fixed guided beam landing on to its center, forming the primary sensing element, and the diffused piezoresistors, which form the secondary sensing element, are embedded in the tensile and compression regions of the fixed guided beam. This micro mechanical 3 D structure is packaged for applying input pressure to the bottom of boss diaphragm. The sensor without pressure load has no deflection of the diaphragm; hence, no strain is observed on the fixed guided beam and also there is no change in the output voltage. When an input pressure P is applied through the pressure port, there is a deformation in the diaphragm causing a deflection, which displaces the mass and the fixed guided beam vertically, causing strain on the fixed guided beam, with tensile strain toward the guided end and compressive strain toward the fixed end of the close magnitudes. The geometrical dimensions of the structure, such as the diaphragm, boss and fixed guided beam, are optimized for linearity and maximum strain for an applied input pressure range of 0 to 10 bar. The structure is also analyzed analytically, numerically and experimentally, and the results are compared.
Findings
The structure offers equal magnitudes of tensile and compressive stresses on the surface of the fixed guided beam. It also offers good linearity and sensitivity. The analytical, simulation and experimental studies of this sensor are introduced and the results correlate with each other. Customized process steps are followed wherein two silicon-on-insulator (SOI) wafers are fusion bonded together, with SOI-1 wafer used to realize the diaphragm along with the boss and SOI-2 wafer to realize the fixed guided beam, leading to formation of a 3D structure. The geometrical dimensions of the structure, such as the diaphragm, boss and fixed guided beam, are optimized for linearity and maximum strain for an applied input pressure range of 0 to10 bar.
Originality/value
This paper presents a unique and compact 3D micro-mechanical structure pressure sensor with a rigid center square diaphragm (boss diaphragm) and a fixed guided beam landing at its center, with diffused piezoresistors embedded in the tensile and compression regions of the fixed guided beam. A total of six masks were involved to realize and fabricate the 3D structure and the sensor, which is presumed to be the first of its kind in the fabrication of MEMS-based piezoresistive pressure sensor.
Details
Keywords
The purpose of this paper is to investigate the effect of elevated temperature on mechanical and physical properties of concrete specimens obtained by substituting the river sand…
Abstract
Purpose
The purpose of this paper is to investigate the effect of elevated temperature on mechanical and physical properties of concrete specimens obtained by substituting the river sand with copper slag (CS) at proportions of 25%, 50%, 75% and 100%. The specimens were heated in an electric furnace up to 100, 200, 300, 400, 500 and 600 C and kept at these temperatures for 2 h duration. After the specimens were cooled in the furnace, mass loss, ultrasonic pulse velocity (UPV), compressive strength, split tensile strength (STS), flexural strength (FS) and modulus of elasticity (MOE) values were determined. No spalling occurred in the specimens after subjected to elevated temperature. The surface cracks were observed only in specimens exposed to 600 C. The maximum reduction in compressive strength and STS at 600C is 50.3% and 36.39% for referral mix (NC), 18% and 16% for specimens with 100% CS (MCS4). The reduction in MOE of specimens is observed to be high as copper slag content increases with increasing temperature. Scanning electron microscopy (SEM) studies are carried out to examine the changes in micro-structures of specimens after exposed to elevated temperatures.
Design/methodology/approach
After casting of concrete specimens, it is cured for 28 days. After attainment of 28 days age, the concrete specimens is taken out from the curing tank and allowed to dry for 2 days to remove any moisture content in the specimens to prevent explosive spalling during the time of heating. The prepared concrete specimen is subjected to temperatures of 100°C, 200°C, 300°C, 400°C, 500°C and 600°C up to 2 h duration. The physical test, mechanical test and SEM studies are carried out after cooling of specimens to room temperature (RT). The quality of concrete specimens is measured by conducting UPV test after cooling to RT.
Findings
The post-thermal strength properties of concrete specimens with copper slag contents are higher than referral mix concrete. The reduction of MOE of concrete specimens is more with incremental in copper slag content with increase in temperatures. Furthermore, the quality of concrete specimens is ranging from “good to medium” up to 500C temperatures based on UPV test.
Originality/value
In this research work, the natural sand is fully replaced with copper slag materials in the concrete mixes. The post-thermal strength properties like residual compressive strength, residual STS, residual FS and residual MOE is higher than referral mix after subjected to elevated temperature conditions. Higher density and toughness properties of copper slag materials will contribute to concrete strength. The effect of elevated temperature is more on MOE of concrete specimens having higher copper slag contents when comparing to specimens compressive strength.
Details
Keywords
Manjunatha M. and Kavitha T.S.
The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and…
Abstract
Purpose
The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and recycled concrete aggregate (RCA) content up to 100% to assess the mechanical properties of SCC. As per guidelines of IS: 383 – 2016, the RCA can be replaced up to 20% of natural coarse aggregate up to M25 grade of concrete. This study assesses the mechanical properties of SCC beyond 20% of RCA content. Based on the experimental investigations, the compressive strength of mixes decreases as the content of RCA increases. It is found that concrete mixes with 20% RCA and shows the maximum compressive strength at 56 days.
Design/methodology/approach
The fresh properties as per EFNARC and IS: 10262–2019 guidelines, ultrasonic pulse velocity testing, mechanical properties and microstructure analysis have been conducted to evaluate the performance of SCC with RCA for practical applications.
Findings
From the experimental investigations, it is found that up to 50% of recycled coarse aggregate can be used for structural applications.
Originality/value
The environmental pollution and dumping of waste on green land can be reduced by effective utilization of recycled coarse aggregate and GGBS in the production of SCC.
Details
Keywords
M. Manjunatha, N. Suresh, Vivek Bindiganavile, Vadiraj Rao and Sanjay Shivaswamy
The aim of the current study is to inspect the influence of high temperatures on the compressive and split-tensile-strength (STS) of concrete mixtures produced by replacing…
Abstract
Purpose
The aim of the current study is to inspect the influence of high temperatures on the compressive and split-tensile-strength (STS) of concrete mixtures produced by replacing natural river sand with waste-foundry sand (WFS) at 25%, 50%, 75% and 100%. When the experimental findings and the projected outcomes were compared by IS:456-2000 code equations, the STS results predicted by the suggested mathematical equations exhibit lower variations. It is proposed to employ the presented mathematical formulas to evaluate the STS of concrete cylindrical specimens at higher temperatures.
Design/methodology/approach
After fabricating, concrete mixtures were allowed to cure for 28 days. For the purpose of avoiding explosive spalling during the heating process, concrete samples are taken out from the curing chamber after 28 days and allowed to dry for two days. The manufactured concrete specimen is exposed to 100 °C, 200 °C, 300 °C, 400 °C, 500 °C and 600 °C temperatures for a duration of 2 h. After the specimens have cool down to room temperature (RT), the physical test, ultrasonic-pulse-velocity (UPV) test, compressive strength test and STS test are carried out.
Findings
With an increase in WFS content, concrete specimens' residue compressive-strength and STS decreases. The STS of samples declines as the WFS content rises with increase in temperature interval. According to the UPV test, the concrete samples quality is “good” up to 400 °C; after 500 °C, it ranges from “doubtful to poor.” The UPV values of various mixes declined as the temperature increased. Mass losses increase with exposure to greater temperatures and with an increase in the proportions of WFS in concrete specimens. For mixtures MWFS-0, MWFS-1, MWFS-2, MWFS-3 and MWFS-4 (0%, 25%, 50%, 75% and 100% WFS content), no cracks were present on any of the samples below 400 °C. Concrete surfaces start to show cracks whenever the intervals of temperature increase above 400 °C.
Originality/value
In this investigation, WFS elements are totally substituted for natural sand in concrete mixtures. The residue strength properties, including residual compressive strength and residual STS, were found to be lower after exposures to greater temperature when comparisons were made to referral mixtures. When comparing specimens’ compressive strength, higher temperatures have more effects on the STS of samples with higher WFS contents.
Details
Keywords
Manjunatha M. and Rakshith S.G.K.
Waste foundry sand (WFS) is a by-product of the metal casting industries and is used for land filling purposes. Disposing of waste creates problems to environment and increases…
Abstract
Purpose
Waste foundry sand (WFS) is a by-product of the metal casting industries and is used for land filling purposes. Disposing of waste creates problems to environment and increases disposal values. To reduce environmental pollutions and solving disposal problems, several authors in worldwide are carried out research work by partial and complete replacing of natural sand with WFS in concrete mixtures. It is found that WFS can be used for production of structural grade concrete. The mechanical characteristics and flexural properties of RC beams has been reviewed in this paper. From this literature review, it has been noticed that there are improvements in concrete strength properties with WFS.
Design/methodology/approach
The results of various properties of concrete have been discussed in this review articles such as compressive strength, split tensile strength, flexural strength, modulus of elasticity, SEM micro-structures and flexural strength properties of RC beams.
Findings
From the literature review, it is found that there is gap of research on flexural behavior of reinforced concrete beam with WFS.
Originality/value
By using WFS effectively, the environmental pollutions and dumping of waste can be reduced. WFS can be successfully used in structural concrete members.
Details
Keywords
Manjunatha Gudekote, Rajashekhar Choudhari, Hanumesh Vaidya, Prasad K.V. and Viharika J.U.
The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects…
Abstract
Purpose
The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.
Design/methodology/approach
The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.
Findings
The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.
Originality/value
The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.
Details
Keywords
Hanumesh Vaidya, Manjunatha Gudekote, Rajashekhar Choudhari and Prasad K.V.
This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the…
Abstract
Purpose
This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the Herschel-Bulkley fluid are considered. The impacts of relevant parameters on flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids. The paper aims to discuss these issues.
Design/methodology/approach
The administering equations are solved utilizing long wavelength and low Reynolds number approximations, and exact solutions are acquired for velocity, temperature, flux and stream functions.
Findings
It is seen that the flow rate in a Newtonian fluid is high when contrasted with the Herschel-Bulkley model, and the inlet elastic radius and outlet elastic radius have opposite effects on the flow rate.
Originality/value
The analysis carried out in this paper is about the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impact of slip and heat transfer on a Herschel-Bulkley fluid is taken into account. The impacts of relevant parameters on the flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids.
Details
Keywords
Suresh Renukappa, Subashini Suresh, Nisha Shetty, Lingaraja Gandhi, Wala Abdalla, Nagaraju Yabbati and Rahul Hiremath
The COVID-19 pandemic has affected around 216 countries and territories worldwide and more than 2000 cities in India, alone. The smart cities mission (SCM) in India started in…
Abstract
Purpose
The COVID-19 pandemic has affected around 216 countries and territories worldwide and more than 2000 cities in India, alone. The smart cities mission (SCM) in India started in 2015 and 100 smart cities were selected to be initiated with a total project cost of INR 2031.72 billion. Smart city strategies play an important role in implementing the measures adopted by the government such as the issuance of social distancing regulations and other COVID-19 mitigation strategies. However, there is no research reported on the role of smart cities strategies in managing the COVID-19 outbreak in developing countries.
Design/methodology/approach
This paper aims to address the research gap in smart cities, technology and healthcare management through a review of the literature and primary data collected using semi-structured interviews.
Findings
Each city is unique and has different challenges, the study revealed six key findings on how smart cities in India managed the COVID-19 outbreak. They used: Integrated Command and Control Centres, Artificial Intelligence and Innovative Application-based Solutions, Smart Waste Management Solutions, Smart Healthcare Management, Smart Data Management and Smart Surveillance.
Originality/value
This paper contributes to informing policymakers of key lessons learnt from the management of COVID-19 in developing countries like India from a smart cities’ perspective. This paper draws on the six Cs for the implications directed to leaders and decision-makers to rethink and act on COVID-19. The six Cs are: Crisis management leadership, Credible communication, Collaboration, Creative governance, Capturing knowledge and Capacity building.
Details
Keywords
Shafia Rana, M. Nawaz and Sayer Obaid Alharbi
The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant…
Abstract
Purpose
The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant role in industrial and engineering applications. For this, the authors dispersed trihybrid nanoparticles into the fluid to enhance the working fluid’s thermal enhancement.
Design/methodology/approach
The finite element method is a numerical scheme and is powerful in achieving convergent and grid-independent solutions compared with other numerical techniques. This method was initially assigned to structural problems. However, it is equally successful for computational fluid dynamics problems.
Findings
Wall shear stress has shown an increasing behavior as the intensity of the magnetic field is increased. Simulations have predicted that Ohmic heat in the case of trihybrid nanofluid (MoS2–Al2O3–Cu/C2H6O2) has the greatest value in comparison with mono and hybrid nanofluids. The most significant influence of chemical reaction on the concentration in tri-nanofluid is noted. This observation is pointed out for both types of chemical reaction (destructive or generative) parameters.
Originality/value
Through a literature survey, the authors analyzed that no one has yet to work on a 3D magnetohydrodynamics Carreau–Yasuda trihybrid nanofluid over a stretched sheet for improving heat and mass transfer over hybrid nanofluids. Herein, molybdenum disulfide (MoS2), aluminum oxide (Al2O3) and copper (Cu) nanoparticles are mixed in ethylene glycol (C2H6O2) to study the thermal enhancement and mass transport of their corresponding resultant mono (Cu/C2H6O2), hybrid (Al2O3–Cu/C2H6O2) and trihybrid (MoS2–Al2O3–Cu/C2H6O2) nanofluids.
Details