Search results

1 – 10 of 318
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 August 2019

Lenka Šimková and Petra Šulcová

The purpose of this study was to investigate the influence of doping ions Mg2+, Zn2+, Al3+ to the structure of hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and subsequently to evaluate…

140

Abstract

Purpose

The purpose of this study was to investigate the influence of doping ions Mg2+, Zn2+, Al3+ to the structure of hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and subsequently to evaluate their adaptation in structure and their anticorrosive properties.

Design/methodology/approach

The substituted hydroxyapatite was synthesized by precipitation method that included the addition of Mg2+, Zn2+ and Al3+ containing precursors to partially replace Ca2+ ions in the hydroxyapatite structure. For precipitation synthesis, three ratios of Ca/P = 1; 1.67; 3 and two values of pH = 7 and 12 were selected. Samples 1 (Ca/P = 1; pH = 7), 2 (Ca/P = 1.67; pH = 7), 3 (Ca/P = 3; pH = 7) and 5 (Ca/P = 1.67; pH = 12) were chosen to monitor the influence of doping ions Mg2+, Zn2+ and Al3+ to the structure of hydroxyapatite and its anticorrosive properties.

Findings

The chosen synthesis conditions are appropriate for the formation of crystalline HAP substituted by elements Mg, Zn and Al. Only for one sample (1-Mg), two different phases (hydroxyapatite and whitlockite) were identified in the phase composition. On the basis of preliminary corrosion tests, pigments were divided into three groups pursuant to their anticorrosion effectivity: pigments with high corrosion-inhibition efficiency; pigments without anticorrosive properties; and pigments that promote corrosion processes.

Originality/value

In addition, no doping effect can be observed except for the sample 1-Mg, which consists of two phases (hydroxyapatite and whitlockite). Preliminary corrosion tests prove that some samples of HAP have extremely high anticorrosive effectivity as effectivity of the commercial pigments. The accelerated corrosion test showed that HAP samples have insufficient corrosion-inhibition properties for coating applications compared with the commercial pigment.

Access Restricted. View access options
Article
Publication date: 28 September 2012

J. Suwanprateeb, F. Thammarakcharoen, K. Wasoontararat and W. Suvannapruk

The purpose of this paper is to study the influence of changing printing parameters (powder layer thickness and binder saturation) in a three dimensional printing machine (3DP) on…

1383

Abstract

Purpose

The purpose of this paper is to study the influence of changing printing parameters (powder layer thickness and binder saturation) in a three dimensional printing machine (3DP) on the transformation of 3DP printed plaster of paris to hydroxyapatite by low temperature phosphorization.

Design/methodology/approach

Plaster of paris‐based powder mixture was used to print specimens using different powder layer thickness (0.080, 0.10 and 0.20 mm) and saturation ratio (1 and 2). Subsequently, density, microstructure, mechanical properties, transformation rate and phase composition were analyzed to compare the influence of such printing parameters on properties.

Findings

It was found that printing parameters strongly affect the transformation efficiency and properties of the samples. The sample printed at layer thickness of 0.10 mm and saturation ratio of 1 yielded the highest transformation rate, density and greatest flexural modulus and strength after conversion. This was related to the sufficiently low density structure with good mechanical properties of the as‐fabricated 3DP sample which was suitable for the low temperature phosphorization process. Hydroxyapatite and monetite were found to be the main phases after conversion and the content of each phase depended on the conversion time and on also the printing parameters.

Research limitations/implications

The optimal printing parameters were true for the materials used in this study. In the case of using other materials formulation, the optimal printing parameters might be different from these values.

Practical implications

The results presented here can be used as a guideline for selecting printing parameters in 3DP machine for achieving properties as desired for specific applications or post‐processing techniques.

Originality/value

The paper demonstrates the printing parameters that were needed to be considered for efficient phase transformation and high mechanical properties.

Details

Rapid Prototyping Journal, vol. 18 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2016

Yajing Zhang, Guian Shi, Yue Liu, Qin Wu, Wenhao Yang and Linliang Zhao

The purpose of this study is to develop new biodegradable magnesium alloy. Magnesium possesses similar mechanical properties to natural bone; it is a potential candidate for…

130

Abstract

Purpose

The purpose of this study is to develop new biodegradable magnesium alloy. Magnesium possesses similar mechanical properties to natural bone; it is a potential candidate for resorbable implant applications. However, in physiological conditions, the degradation rate of Mg is too high to be used as an implant material.

Design/methodology/approach

In this research, Zn, Sr and Ca were chosen as alloying elements; a coating was deposited on the MgZnSrCa alloy surface by means of a biomimetic technique. The corrosion rates of the uncoated and coated specimens were tested in simulated body fluid.

Findings

The hydroxyapatite coating formed on the MgZnSrCa alloy surface and the hydroxyapatite layer markedly decreased the corrosion rate of the MgZnSrCa alloy.

Originality/value

A homogenous hydroxyapatite coating was formed on the MgZnSrCa alloy surface by using a biomimetic coating technique. The biomimetic hydroxyapatite coating markedly reduced the corrosion rate of the MgZnSrCa alloy, and the largest decrease in wastage rate was 44 per cent.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 10 June 2014

Teodora Marcu, Cinzia Menapace, Luca Girardini, Dan Leordean and Catalin Popa

The purpose of this paper was to obtain by means of selective laser melting and then characterize biocomposites of medical-grade Ti6Al7Nb with hydroxyapatite (2 and 5 vol.%) and…

520

Abstract

Purpose

The purpose of this paper was to obtain by means of selective laser melting and then characterize biocomposites of medical-grade Ti6Al7Nb with hydroxyapatite (2 and 5 vol.%) and without hydroxyapatite, as reference.

Design/methodology/approach

Rectangular samples were manufactured with the same scanning strategy; the laser power was between 50 W and 200 W. Processed samples were analysed by means of optical microscopy, scanning electron microscopy and microhardness.

Findings

The results showed that despite the very short processing times, hydroxyapatite decomposed and interacted with the base Ti6Al7Nb material. The decomposition degree was found to depend on the applied laser power. From the porosity and bulk microstructure point of view, the most appropriate materials for the purposed medical applications were Ti6Al7Nb with hydroxyapatite processed with a laser power of 50 W.

Originality/value

The originality of the present work consists in the study of the behaviour and interaction of hydroxyapatite additive with the Ti6Al7Nb base powder under selective laser melting conditions, as depending on the applied laser power.

Details

Rapid Prototyping Journal, vol. 20 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 19 December 2024

Mohammed Soliman Aly Khedr, Mona Foad Ali, Ahmed Nabil Emam, Abdullah Mahmoud Kamel and Manal Abdel-Monem Ghanam

This study aims to provide an efficient nanocomposite that might be used to protect deteriorated archaeological stucco.

34

Abstract

Purpose

This study aims to provide an efficient nanocomposite that might be used to protect deteriorated archaeological stucco.

Design/methodology/approach

The current experimental study evaluates the effectiveness of the hydroxyapatite nanoparticles (HA NPs) added to graphite carbon nitride (g-C3N4) and mixed with Paraloid (B-72) (B-44) in acetone in consolidating samples. The physicochemical properties of the as-prepared nanopowders have been investigated using Fourier transform infrared (FT-IR). This study involves monitoring the transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform changes in consolidated samples after exposure to various conditions by using the digital microscope and scanning electron microscopy to identify the appearance of the consolidated stucco samples after applying the selected nanocomposites and after their artificial aging procedures. Color change is measured using a colorimeter, and comparisons are made between samples before and after aging. Physical and mechanical properties are determined, and the contact angle is measured to measure hydrophobicity rate.

Findings

The obtained results indicate that HA/g-C3N4 hybrid nanocomposites with a composition of HA 0.5%/g-C3N4 1%/B-72 3% and HA 0.5%/g-C3N4 1%/B-44 3% achieved the best consolidating results among the proposed mixtures for stucco samples, where the percentage of weight loss was 0.77 with B-72, 0.53 with B-44. Surface identification and characterization of hydroxyapatite HA NPs/g-C3N4 hybrid nanocomposites embedded in B72/B44matrix were carried out using Scanning Electron Microscopy coupled with energy-dispersive x-ray spectroscopy (SEM–EDX).

Originality/value

This study provides important findings from the analytical procedures used to evaluate the consolidation materials used in this study. The findings are beneficial for the preservation of archaeological stucco. The investigation findings revealed that the most favorable outcomes were obtained from HA/g-C3N4 hybrid nanocomposites containing HA 0.5%, g-C3N4 1% and B-72 3%, as well as HA 0.5%, g-C3N4 1% and B-44 3%. Consequently, it is advised to use this nanocomposite to consolidate archaeological stucco, thus establishing a promising initial stride toward conserving archaeological stucco for future research endeavors. This study introduces a new nanocomposite material (HA NPs/G-C3N4) that can be used to protect and improve archaeological plaster. This is very important for preserving cultural heritage. The incorporation of nanotechnology improves the material’s physical and mechanical qualities. The research uses various characterization techniques (including TEM, XRD and FT-IR) to meticulously analyze the physicochemical properties of the nanocomposite material and assess its efficacy in practical applications through artificial aging experiments, offering novel insights and methodologies for future cultural relic preservation studies.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 28 January 2020

Yuan-Min Lin, Hsuan Chen, Chih-Hsin Lin, Pin-Ju Huang and Shyh-Yuan Lee

The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet digital light…

529

Abstract

Purpose

The purpose of this study is to develop resin composite materials composed of polycaprolactone (PCL) acrylates and hydroxyapatite (HA) nanoparticles for ultraviolet digital light projection (DLP) three-dimensional (3D) printing technique.

Design/methodology/approach

Two PCL-based triacrylates, namely, glycerol-3 caprolactone-triacrylate (Gly-3CL-TA) and glycerol-6 caprolactone-triacrylate (Gly-6CL-TA) were synthesized from ring-opening polymerization of ε-caprolacton monomer in the presence of glycerol and then acrylation was performed using acryloyl chloride. 3D printing resins made of Gly-3CL-TA or Gly-6CL-TA, 5% HA and 3% of photoinitiator 2,4,6-Trimethylbenzoyl-diphenyl-phosphineoxide were then formulated. The surface topography, surface element composition, flexural strength, flexural modulus, cytotoxicity and degradation of the PCL-based scaffolds were then characterized.

Findings

Resin composite composed of Gly-3CL-TA or Gly-6CL-TA and 5% (w/w) of HA can be printed by 405 nm DLP 3D printers. The former has lower viscosity and thus can form a more uniform layer-by-layer structure, while the latter exhibited a higher flexural strength and modulus after being printed. Both composite materials are non-cytotoxic and degradable.

Originality/value

This study provides a direction of the formulation of environment-friendly resin composite for DLP 3D printing. Both resin composites have huge potential in tissue engineering applications.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 13 January 2012

M.M. Savalani, L. Hao, P.M. Dickens, Y. Zhang, K.E. Tanner and R.A. Harris

Hydroxyapatite‐polymer composite materials are being researched for the development of low‐load bearing implants because of their bioactive and osteoconductive properties, while…

1298

Abstract

Purpose

Hydroxyapatite‐polymer composite materials are being researched for the development of low‐load bearing implants because of their bioactive and osteoconductive properties, while avoiding modulus mismatch found in homogenous materials. For the direct production of hydroxyapatite‐polymer composite implants, selective laser sintering (SLS) has been used and various parameters and their effects on the physical properties (micro and macro morphologies) have been investigated. The purpose of this paper is to identify the most influential parameters on the micro and macro pore morphologies of sintered hydroxyapatite‐polymer composites.

Design/methodology/approach

A two‐level full factorial experiment was designed to evaluate the effects of the various processing parameters and their effects on the physical properties, including open porosity, average pore width and the percentage of pores which could enable potential bone regeneration and ingrowth of the sintered parts. The density of the sintered parts was measured by weight and volume; optical microscopy combined with the interception method was used to determine the average pore size and proportion of pores suitable to enable bone regeneration.

Findings

It was found that the effect of build layer thickness was the most influential parameter with respect to physical and pore morphology features. Consequently, it is found that the energy density equation with the layer thickness parameter provides a better estimation of part porosity of composite structures than the energy density equation without the layer thickness parameter. However, further work needs to be conducted to overcome the existing error of variance.

Originality/value

This work is the first step in identifying the most significant SLS parameters and their effects on the porosity, micro and macro pore morphologies of the fabricated parts. This is an important step in the further development of implants which may be required.

Access Restricted. View access options
Article
Publication date: 25 November 2024

Gaurav Tripathi and Pulak Mohan Pandey

Topologically ordered functionally graded composite (TOFGC) biodegradable materials are needed in the field of metallic degradable implants, as they degrade over a period of time…

59

Abstract

Purpose

Topologically ordered functionally graded composite (TOFGC) biodegradable materials are needed in the field of metallic degradable implants, as they degrade over a period of time avoiding the necessity of another surgery for implant removal. Also, their rate of degradation can be tailored to match the requirement of the patient. These biomaterials also have the functionality to assist bone growth and eliminate stress shielding in orthopaedic implants.

Design/methodology/approach

In this study, TOFGC biomaterials were developed for the first time using additive manufacturing, pressureless microwave sintering and casting methods, and their cytocompatibility, hemocompatibility and in vitro degradation evaluations were done. Also, pure dense iron and iron scaffolds were included in the study, for the comparison of results with the iron-hydroxyapatite-zinc functionally graded composite biomaterial.

Findings

The maximum weight loss and corrosion rate were found to be 6.98% and 2.38 mmpy, respectively, in the immersion test and electrochemical test for Fe-3.5HAp-54Zn biomaterial. Zinc-infiltrated composite biomaterials exhibited excellent cytocompatibility and hemocompatibility as compared to pure dense iron and iron scaffolds. A comparative analysis was conducted, taking into account relevant literature, and it was determined that the fabricated iron-hydroxyapatite-zinc biomaterial demonstrated desirable degradation and biological characteristics, customized to meet the specific requirements of bone tissue engineering applications.

Originality/value

TOFGC iron-hydroxyapatite-zinc biomaterial has been fabricated for the first time using the developed novel methodology and their degradation and biological characterizations were performed.

Details

Rapid Prototyping Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Available. Open Access. Open Access
Article
Publication date: 14 December 2023

Fouad Al Bayaty, Mazen M. Jamil Al-Obaidi, Anissa Lokman, Suhaila Yazid and Omar Emad Ibrahim

This study examines the osteoconductive and healing capabilities of locally implanted synthetic hydroxyapatite (sHAp) derived from eggshells in the central incisor sockets of rats.

900

Abstract

Purpose

This study examines the osteoconductive and healing capabilities of locally implanted synthetic hydroxyapatite (sHAp) derived from eggshells in the central incisor sockets of rats.

Design/methodology/approach

Toxicity experiments were conducted in vitro and in vivo, to testify the safety dosage of sHAp. Around 24 mature male Sprague–Dawley (SD) rats had their upper central incisors extracted. The rats were placed into three groups of eight rats each: Group 1: the sockets of extracted central incisors were left unfilled (control), Group 2: filled up with commercially available hydroxyapatite (HAp) and Group 3: implanted with sHAp locally retrieved from eggshells. After extraction, four rats from each group were sacrificed at 2nd and 4th weeks. Maxillary tissue sections were obtained and stained with hematoxylin and eosin (H&E) and Masson’s trichome (MT) staining. Anti-osteocalcin (OCN) and proliferating cell nuclear antigen (PCNA) were used primary antibodies for immunohistochemistry (IHC) special labeling.

Findings

The results showed that the locally implanted sHAp was non-toxic and safe in cell lines (human osteoblast and fibroblast) and animals. Histological analysis of H&E, MT and IHC showed that the sockets treated with locally implanted sHAp from eggshells were filled with new bone tissue of comparable thickness to other groups.

Originality/value

This unique technique uses locally implanted eggshell-derived sHAp with osteoconductive characteristics. In an in vivo model, sHAps increased OCN and PCNA expression to improve bone repair.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Access Restricted. View access options
Article
Publication date: 8 December 2020

Chunyan Yao, Dongdong Chen, Zhongli Zheng, Qiangsheng Wang and Kaijie Fu

The purpose of this study is to obtain an effective implant with porous structures on its surface, named porous-surfaced implant, which helps to improve the overall stability of…

201

Abstract

Purpose

The purpose of this study is to obtain an effective implant with porous structures on its surface, named porous-surfaced implant, which helps to improve the overall stability of the implant and promote the combination of implant and alveolar bone.

Design/methodology/approach

Porous-surfaced implants with a porosity of 16%, 21%and 32% were designed and the effect of porosity on the strength of the implant was analyzed by ABAQUS software. Porous-surfaced implants with different porosity were printed by selective laser melting and the surface morphology was observed. Animal experiments of implants with porous structures and coating were carried out in healthy beagle dogs. The experimental group was treated with hydroxyapatite coating and the control group was not treated. Bone volume (BV) and total volume (TV) of the implant surface of the experimental group and control group were calculated by Skyscan CTvol software.

Findings

With the increase of porosity of porous-surfaced implants, the neck stress of the porous-surfaced implants increased and their strength decreased. In addition, in animal vivo experiments, the ratio value of BV to TV of the porous-surfaced implants was between 55.38% and 79.86%, which was the largest when the porosity of porous-surfaced implants was 16%. The internal and surrounding bone formation content of porous-surfaced implants with hydroxyapatite coating was higher than porous-surfaced implants without coating.

Originality/value

The results of this study show that the pores on the surface of implants can be filled with the new bone and porous-surfaced implants with 16% porosity provide better space for the growth of new bone. The porous structures with hydroxyapatite coating are beneficial to the growth of new bone around implants. The results of this study are helpful to improve the overall stability of implants and to promote the combination of implant and alveolar bone.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 318
Per page
102050