Julius Wilker, Tim Göttlich, Thorsten Helmig, Rafael Solana Gómez, Hossein Askarizadeh and Reinhold Kneer
Particularly during machining, large heat sources and thus high temperature gradients and mechanical stress occur in the cutting zone. By using cutting fluids, part of the heat…
Abstract
Purpose
Particularly during machining, large heat sources and thus high temperature gradients and mechanical stress occur in the cutting zone. By using cutting fluids, part of the heat generated can be dissipated, thereby reducing local temperatures. To quantify the cooling efficiency of the cutting fluid, the flow behaviour of the cutting fluid in vicinity of the cutting zone must be determined to derive the resulting convective heat transfer coefficients at the tool. The purpose of this paper is to investigate the local distribution of the convective heat transfer coefficient as a function of the flow boundary conditions, specifically evaluating the effects of Reynolds number, injection angle and nozzle radius.
Design/methodology/approach
The geometries, temperature fields as well as the heat sources resulting during the machining process are extracted from a chip formation simulation using finite element method (FEM) and used to set up a three-dimensional computational fluid dynamics (CFD) flow simulation.
Findings
On the tool rake face, the local distribution of the convective heat transfer coefficient can be divided into three regions. Firstly, the region where the liquid impinging jet initially strikes, then a region near the chip where the flow is strongly deflected and then the remaining region in the boundary layer region. For each region, a function is derived that describes its position, subsequently the mean convective heat transfer coefficient is determined and summarised in a Nusselt correlation as a function of the flow parameters.
Research limitations/implications
Simulation results reveal that the distribution of the convective heat transfer coefficient on the tool rake face can be divided into three distinct regions: the impingement zone where the impinging jet first strikes, the deflection zone near the chip where the flow sharply redirects and the boundary layer zone covering the remaining surface. A geometric function is derived to describe the position and extent of each of these areas. In addition, the mean convective heat transfer coefficient can be determined for each of the regions using a Nusselt correlation based on the flow parameters.
Practical implications
These correlations allow for simplified determination of the local convective heat transfer coefficient on the tool.
Originality/value
This paper introduces an innovative approach for estimating the local distribution of the convective heat transfer coefficient at the tool rake face during orthogonal cutting under cutting fluid supply. The influence of the three-dimensional flow field of the cutting fluid jet of the convective heat transfer coefficient on the tool rake face is analysed in detail in the vicinity of the chip as a function of varying Reynolds numbers, nozzle radii and injection angles within a three-dimensional geometry.
Details
Keywords
Farah Nadzirah Jamrus, Anuar Ishak, Iskandar Waini and Umair Khan
In recent times, ternary hybrid nanofluid has garnered attention from scientist and researchers due to its improved thermal efficiency. This study aims to delve into the…
Abstract
Purpose
In recent times, ternary hybrid nanofluid has garnered attention from scientist and researchers due to its improved thermal efficiency. This study aims to delve into the examination of ternary hybrid nanofluid (Al2O3–Cu–TiO2/water), particularly concerning axisymmetric flow over a nonlinearly permeable stretching/shrinking disk. In addition, the investigation of convective boundary conditions and thermal radiation effects is also considered within the context of the described flow problem.
Design/methodology/approach
Mathematical formulations representing this problem are reduced into a set of ordinary differential equations (ODEs) using similarity transformation. The MATLAB boundary value problem solver is then used to solve the obtained set of ODEs. The impact of considered physical parameters such as suction parameter, radiation parameter, nonlinear parameter, nanoparticle volumetric concentration and Biot number on the flow profiles as well as the physical quantities is illustrated in graphical form.
Findings
The findings revealed the thermal flux for the nonlinearly shrinking disk is approximately 1.33%, significantly higher when compared to the linearly shrinking disk. Moreover, the existence of dual solutions attributed to the nonlinear stretching/shrinking disk is unveiled, with the first solution being identified as the stable and reliable solution through temporal stability analysis.
Practical implications
Understanding ternary hybrid nanofluid behavior and flow has applications in engineering, energy systems and materials research. This study may help develop and optimize nanofluid systems like heat exchangers and cooling systems.
Originality/value
The study of flow dynamics across nonlinear stretching/shrinking disk gains less attention compared to linear stretching/shrinking geometries. Many natural and industrial processes involve nonlinear changes in boundary shapes or sizes. Understanding flow dynamics over nonlinear shrinking/stretching disks is therefore essential for applications in various fields such as materials processing, biomedical engineering and environmental sciences. Hence, this study highlights the axisymmetric flow over a nonlinear stretching/shrinking disk using ternary hybrid nanofluid composed of alumina (Al2O3), copper (Cu) and titania (TiO2). Besides, this study tackles a complex problem involving multiple factors such as suction, radiation and convective boundary conditions. Analyzing such complex systems can provide valuable insights into real-world phenomena where multiple factors interact.
Details
Keywords
Martin Hettegger, Bernhard Streibl, Oszkár Bíró and Harald Neudorfer
For an accurate simulation of the temperature distribution inside an electrical machine a method for deriving the convective heat transfer coefficient numerically would be…
Abstract
Purpose
For an accurate simulation of the temperature distribution inside an electrical machine a method for deriving the convective heat transfer coefficient numerically would be desirable. The purpose of this paper is to present a reliable simulation setup, which is able to reproduce the measured convective heat transfer coefficient at certain spots on the end windings of an electric machine.
Design/methodology/approach
The heat flux density on certain spots on the end windings of an induction motor have been measured with heat flux sensors, in order to find out the convective heat transfer coefficient. To identify the air mass flow inside a cooling duct of an encapsulated cooling circuit during the operation of the motor, the pressure loss inside the duct has been measured. The measured data for temperature and air mass flow have been used as boundary conditions for the identification of the convective heat transfer coefficient with a commercial software for computational fluid dynamics (CFD).
Findings
The measured data for the local convective heat transfer coefficients have been compared to the results of the numerical simulation for various rotational velocities. The quality of the simulated convective heat transfer coefficient depending on the rotational velocity meets the measured values. Owing to the used simplified model, the quantity of the measured values differ strongly around the simulated coefficient for the convective heat transfer.
Originality/value
The derivation of the convective heat transfer is a challenging subject in CFD but has become more reliable with the invention of the SST and the SAS‐SST turbulence model. In the present work, measurements on the end windings have been compared to simulation results derived with the SAS‐SST turbulence model.
Details
Keywords
Priyadharsini Sivaraj and Sivaraj Chinnasamy
This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…
Abstract
Purpose
This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.
Design/methodology/approach
Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.
Findings
The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.
Research limitations/implications
Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.
Practical implications
Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.
Social implications
Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.
Originality/value
An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.
Details
Keywords
Rusya Iryanti Yahaya, Norihan Md Arifin, Ioan Pop, Fadzilah Md Ali and Siti Suzilliana Putri Mohamed Isa
This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic…
Abstract
Purpose
This paper aims to study the stagnation point flow of Al2O3–Cu/H2O hybrid nanofluid over a radially shrinking disk with the imposition of the magnetic field, viscous-Ohmic dissipation and convective boundary condition.
Design/methodology/approach
Similarity variables are introduced and used in reducing the governing partial differential equations into a system of ordinary differential equations. A built-in bvp4c solver in MATLAB is then used in the computation of the numerical solutions for equations (7) and (8) subject to the boundary conditions (9). Then, the behavior of the flow and thermal fields of the hybrid nanofluid, with various values of controlling parameters, are analyzed.
Findings
The steady flow problem resulted in multiple (dual) solutions. A stability analysis performed to identify the stable solution applicable in practice revealed that the first solution is stable while the second solution is unstable. The skin friction coefficient and Nusselt number of the hybrid nanofluid are found to be greater than the Al2O3–H2O nanofluid. Thus, the hybrid nanofluid has a better heat transfer performance than the nanofluid. Besides that, the presence of the magnetic field, suction, convective boundary condition and the enhancement of nanoparticle volume fraction of Cu augments the skin friction coefficient and Nusselt number of the hybrid nanofluid. Meanwhile, the presence of viscous-Ohmic dissipation reduces the heat transfer performance of the fluid.
Originality/value
To the best of the authors’ knowledge, the present results are original and new for the study of the flow and heat transfer of Al2O3–Cu/H2O hybrid nanofluid past a permeable radially shrinking disk. Considerable efforts have been directed toward the study of the boundary layer flow and heat transfer over stretching/shrinking surfaces and disks because of its numerous industrial applications, such as electronic, power, manufacturing, aerospace and transportation industries. Common heat transfer fluids such as water, alumina, cuprum and engine oil have limited heat transfer capabilities due to their low heat transfer properties. In contrast, metals have higher thermal conductivities than these fluids. Therefore, it is desirable to combine the two substances to produce a heat transfer medium that behaves like a fluid but has higher heat transfer properties.
Details
Keywords
M. Sabour, Mohammad Ghalambaz and Ali Chamkha
The purpose of this study is to theoretically analyze the laminar free convection heat transfer of nanofluids in a square cavity. The sidewalls of the cavity are subject to…
Abstract
Purpose
The purpose of this study is to theoretically analyze the laminar free convection heat transfer of nanofluids in a square cavity. The sidewalls of the cavity are subject to temperature difference, whereas the bottom and top are insulated. Based on the available experimental results in the literature, two new non-dimensional parameters, namely, the thermal conductivity parameter (Nc) and dynamic viscosity parameter (Nv) are introduced. These parameters indicate the augmentation of the thermal conductivity and dynamic viscosity of the nanofluid by dispersing nanoparticles.
Design/methodology/approach
The governing equations are transformed into non-dimensional form using the thermo-physical properties of the base fluid. The obtained governing equations are solved numerically using the finite element method. The results are reported for the general non-dimensional form of the problem as well as case studies in the form of isotherms, streamlines and the graphs of the average Nusselt number. Using the concept of Nc and Nv, some criteria for convective enhancement of nanofluids are proposed. As practical cases, the effect of the size of nanoparticles, the shape of nanoparticles, the type of nanoparticles, the type of base fluids and working temperature on the enhancement of heat transfer are analyzed.
Findings
The results show that the increase of the magnitude of the Rayleigh number increases of the efficiency of using nanofluids. The type of nanoparticles and the type of the base fluid significantly affects the enhancement of using nanofluids. Some practical cases are found, in which utilizing nanoparticles in the base fluid results in deterioration of the heat transfer. The working temperature of the nanofluid is very crucial issue. The increase of the working temperature of the nanofluid decreases the convective heat transfer, which limits the capability of nanofluids in decreasing the size of the thermal systems.
Originality/value
In the present study, a separation line based on two non-dimensional parameters (i.e. Nc and Nv) are introduced. The separation line demonstrates a boundary between augmentation and deterioration of heat transfer by using nanoparticles. Indeed, by utilizing the separation lines, the convective enhancement of using nanofluid with a specified Nc and Nv can be simply estimated.
Details
Keywords
Aniket Halder, Arabdha Bhattacharya, Mikhail A. Sheremet, Nirmalendu Biswas, Nirmal K. Manna, Dipak Kumar Mandal and Ali J. Chamkha
This study aims to examine magnetohydrodynamic mixed convective phenomena and entropy generation within a semicircular porous channel, incorporating impinging jet cooling and the…
Abstract
Purpose
This study aims to examine magnetohydrodynamic mixed convective phenomena and entropy generation within a semicircular porous channel, incorporating impinging jet cooling and the effects of thermal radiation. The present study analyzes the complex flow dynamics and heat transfer characteristics of a highly diluted 0.1% (volume) concentration Cu–Al2O3/water hybrid nanofluid, based on findings from previous studies. The investigation is intended to support the development of effective thermal management systems across diverse industries, such as cooling of electronic devices and enhanced energy system applications.
Design/methodology/approach
This study incorporates a heated curved bottom wall and a cooling jet of Cu–Al2O3/water hybrid nanofluid impinging from the central top inlet, with two horizontal exit ports along the rectangular duct. Finite element-based simulations are conducted using COMSOL Multiphysics, using a single-phase homogeneous model justified by earlier works. This method uses experimental data of effective thermal conductivity and viscosity, emphasizing the evaluation of thermal performance in scenarios involving intricate geometries and multiphysical conditions. The study analyzes nondimensional variables such as Reynolds number (Re), modified Rayleigh number (Ram), Hartmann number (Ha), Darcy number (Da) and radiation parameter while maintaining a constant nanofluid volume fraction. A grid independence study and code validation were performed to ensure numerical accuracy.
Findings
The analysis indicates that elevated Re contribute to a lessening in the thermal boundary layer thickness, prompting flow separation and significantly amplifying the average Nusselt number. The mixed convective heat transfer enhancement, coupled with an overall reduction in total entropy generation, diminishes with a rising Ha. However, optimized combinations of higher values for modified Ram and Da yield improved heat transfer performance, particularly pronounced with increasing Ha. Radiative heat transfer exerts a detrimental impact on both heat transfer and entropy production.
Practical implications
While the single-phase model captures key macroscopic effects differentiating nanofluids from base fluids, it does not provide insights at the nanoparticle level. Future studies could incorporate two-phase models to capture particle-level dispersion effects. In addition, experimental validation of the findings would strengthen the study’s conclusions.
Originality/value
This work represents innovative perspectives on the development of efficient hydrothermal systems, accounting for the influences of thermal radiation, porous media and hybrid nanofluids within a complex geometry. The results offer critical insights for enhancing heat transfer efficiency in real-world applications, especially in sectors demanding advanced cooling solutions.
Details
Keywords
Umair Khan, Aurang Zaib, Ioan Pop, Iskandar Waini and Anuar Ishak
Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery…
Abstract
Purpose
Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery, biotechnology, food processing, chemotherapy and other fields. This paper aims to inspect the behavior of the mixed convection magnetohydrodynamic flow and heat transfer induced by a nonlinear stretching/shrinking sheet in a nanofluid with a convective boundary condition. Tiwari and Das mathematical nanofluid model is incorporated in the analysis.
Design/methodology/approach
The mathematical model is initially transformed to a nondimensional form by using dimensionless variables. Then the nondimensional partial differential equations are further transformed to a set of similarity equations by using the similarity technique. These equations are solved numerically by the bvp4c function in MATLAB software.
Findings
For a certain range of the stretching/shrinking parameter, two solutions are obtained. The friction factor and the heat transfer rate escalate due to suction parameter with adding nanoparticles volume fraction by almost 27.15% and 0.153% for the upper branch solution, while the friction factor declines by almost 30.10% but the heat transfer rate augments by 0.145% for the lower branch solution. Furthermore, the behavior of the nanoparticle volume fractions on the heat transfer rate behaves differently in the presence of the mixed convection effect. The temperature of fluid augments with increasing Biot number for both solutions.
Originality/value
The present work considers the flow and heat transfer induced by a stretching/shrinking sheet in a nanofluid using the Tiwari–Das nanofluid model with a convective boundary condition, where the effect of the buoyancy force is taken into consideration. It is shown that two solutions are found for a certain range of the shrinking strength, while the solution is unique for the stretching case. This study is important for scientists working in the growing field of nanofluids to become familiar with the flow properties and behaviors of such nanofluids.
Details
Keywords
Md. Jashim Uddin, O. Anwar Bég and Izani Md. Ismail
The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical…
Abstract
Purpose
The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical plate in a saturated porous medium taking into account thermal and mass convective boundary conditions numerically.
Design/methodology/approach
The governing equations are reduced to a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The transformed equations are then solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method with Maple 17 and Adomian decomposition method (ADM) in Mathematica.
Findings
The transformed equations are controlled by the parameter: power-law exponent, n; temperature ratio, Tr; Rosseland radiation-conduction, R; conduction-convection, Nc; and diffusion-convection, Nd. Temperature and nanoparticle concentration is enhanced with convection-diffusion parameter as are temperatures. Velocities are depressed with greater power-law rheological index whereas temperatures are elevated. Increasing thermal radiation flux accelerate the flow but to strongly heat the boundary layer. Very good correlation of the Maple solutions with previous stationary free stream and ADM solutions for a moving free stream, are obtained.
Practical implications
The study is relevant to high temperature nano-polymer manufacturing systems.
Originality/value
Lie symmetry group is used for the first time to transform the governing equations into a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The study is relevant to high temperature nano-polymer manufacturing systems.
Details
Keywords
Bo Xie and Yuan-Ming Wang
This paper aims to discuss the stagnation-point flow and heat transfer for power-law fluid pass through a stretching surface with heat generation effect. Unlike the previous…
Abstract
Purpose
This paper aims to discuss the stagnation-point flow and heat transfer for power-law fluid pass through a stretching surface with heat generation effect. Unlike the previous considerations about the research on stagnation-point flow, the process of heat transfer and the convective heat transfer boundary condition use the modified Fourier’s law in which the heat flux is power-law-dependent on velocity gradient.
Design/methodology/approach
The similarly transformation is used to convert the governing partial differential equations into a series of ordinary differential equations which are solved analytically by using the differential transform method and the base function method.
Findings
The variations of the velocity and temperature fields for different specific related parameters are graphically discussed and analyzed. There is a special phenomenon that all the velocity profiles converge from the initial value of velocity to stagnation parameter values. And the larger power-law index enhancesthe momentum diffusion. A significant phenomenon can be observed that the larger power-law index causes a decline in the heat flux. This influence indicates that the higher viscosity restricts the heat transfer. Furthermore, both velocity gradient and temperature gradient play an indispensable role in the processes of heat transfer.
Originality/value
This paper researches the process of heat transfer of stagnation-point flow ofpower-law magneto-hydro-dynamical fluid over a stretching surface with modified convective heat transfer boundary condition.