Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin
This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…
Abstract
This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.
Details
Keywords
Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang
Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the…
Abstract
Purpose
Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this study is to fulfill the weakness of the existed BSS method.
Design/methodology/approach
To deal with this problem, this paper proposes a blind source extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode functions with a multi-shift correlation method.
Findings
Experimental results prove the extracted fault signal can be easily identified through the envelope spectrum. The application of the proposed method is validated using simulated signals and rolling element bearing signals of the train axle.
Originality/value
This paper proposes an underdetermined BSE method based on the EMD and the temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal from the train rolling element bearings show that the proposed method can well extract the bearing fault signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other rotating machinery, such as gears or blades.
Details
Keywords
Yanshuang Mei, Xin Xu and Xupin Zhang
Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated…
Abstract
Purpose
Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated with urban digital transformation, in order to yield detailed insights that can contribute to the formulation of well-informed decisions and strategies in the field of urban development initiatives.
Design/methodology/approach
Through analysis of parallels between urban digital transformation and gyroscope motion in physics, the study developed the urban digital transformation gyroscope model (UDTGM), which comprises of seven core elements. With the balanced panel dataset from 268 cities at and above the prefecture level in China, we validate the dynamic mechanism of this model.
Findings
The findings of this study underscore that the collaboration among infrastructure development, knowledge-driven forces and economic operations markedly bolsters the urban digital transformation gyroscope’s efficacy.
Practical implications
This research introduces a groundbreaking framework for comprehending urban digital transformation, potentially facilitating its balanced and systemic practical implementation.
Originality/value
This study pioneers the UDTGM theoretically and verifies the dynamic mechanism of this model with real data.
Details
Keywords
Yang Li, Yaochen Qin, Liqun Ma and Ziwu Pan
The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau…
Abstract
Purpose
The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau.
Design/methodology/approach
The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described.
Findings
The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November.
Originality/value
This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.
Details
Keywords
Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao
This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…
Abstract
Purpose
This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.
Design/methodology/approach
The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.
Findings
The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.
Originality/value
The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.
Details
Keywords
Fang Wen, Yun Bai, Xin Zhang, Yao Chen and Ninghai Li
This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.
Abstract
Purpose
This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.
Design/methodology/approach
A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway, the minimum headway and the latest end-of-operation time. The objective of the model is to maximize the number of reachable passengers in the end-of-operation period. A solution method based on a preset train service is proposed, which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.
Findings
The results of the case study of Wuhan Metro show that the solution method can obtain high-quality solutions in a shorter time; and the shorter the time interval of passenger flow data, the more obvious the advantage of solution speed; after optimization, the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.
Originality/value
Existing research results only consider the passengers who take the last train. Compared with previous research, considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination. Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network, but due to the decrease in passenger demand, postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.
Details
Keywords
Jian Li, Xinlei Yan, Feifei Zhao and Xin Zhao
The purpose of this paper is to solve the problem that the location of the initiation point cannot be measured accurately in the shallow underground space, this paper proposes a…
Abstract
Purpose
The purpose of this paper is to solve the problem that the location of the initiation point cannot be measured accurately in the shallow underground space, this paper proposes a method, which is based on fusion of multidimensional vibration sensor information, to locate single shallow underground sources.
Design/methodology/approach
First, in this paper, using the characteristics of low multipath interference and good P-wave polarization in the near field, the adaptive covariance matrix algorithm is used to extract the polarization angle information of the P-wave and the short term averaging/long term averaging algorithm is used to extract the first break travel time information. Second, a hybrid positioning model based on travel time and polarization angle is constructed. Third, the positioning model is taken as the particle update fitness function of quantum-behaved particle swarm optimization and calculation is performed in the hybrid positioning model. Finally, the experiment verification is carried out in the field.
Findings
The experimental results show that, with root mean square error, spherical error probable and fitness value as evaluation indicators, the positioning performance of this method is better than that without speed prediction. And the positioning accuracy of this method has been improved by nearly 30%, giving all of the three tests a positioning error within 0.5 m and a fitness less than 1.
Originality/value
This method provides a new idea for high-precision positioning of shallow underground single source. It has a certain engineering application value in the fields of directional demolition of engineering blasting, water inrush and burst mud prediction, fuze position measurement, underground initiation point positioning of ammunition, mine blasting monitoring and so on.