Search results
1 – 10 of over 6000Intuitionistic linguistic fuzzy information (ILFI), characterized by linguistic terms and intuitionistic fuzzy sets (IFSs), can easily express the fuzzy information in the process…
Abstract
Purpose
Intuitionistic linguistic fuzzy information (ILFI), characterized by linguistic terms and intuitionistic fuzzy sets (IFSs), can easily express the fuzzy information in the process of muticriteria decision making (MCDM) and muticriteria group decision making (MCGDM) problems. The purpose of this paper is to provide an overview of aggregation operators (AOs) and applications of ILFI.
Design/methodology/approach
First, some meaningful AOs for ILFI are summarized, and some extended MCDM approaches for intuitionistic uncertain linguistic variables (IULVs), such as extended TOPSIS, extended TODIM, extended VIKOR, are discussed. Then, the authors summarize and analyze the applications about the AOs of IULVs.
Findings
IULVs, characterized by linguistic terms and IFSs, can more detailed and comprehensively express the criteria values in the process of MCDM and MCGDM. Therefore, lots of researchers pay more and more attention to the MCDM or MCGDM methods with IULVs.
Originality/value
The authors summarize and analyze the applications about the AOs of IULVs Finally, the authors point out some possible directions for future research.
Details
Keywords
Ahmed Mohammed, Qian Wang and Xiaodong Li
The purpose of this paper is to investigate the economic feasibility of a three-echelon Halal Meat Supply Chain (HMSC) network that is monitored by a proposed radio frequency…
Abstract
Purpose
The purpose of this paper is to investigate the economic feasibility of a three-echelon Halal Meat Supply Chain (HMSC) network that is monitored by a proposed radio frequency identification (RFID)-based management system for enhancing the integrity traceability of Halal meat products and to maximize the average integrity number of Halal meat products, maximize the return of investment (ROI), maximize the capacity utilization of facilities and minimize the total investment cost of the proposed RFID-monitoring system. The location-allocation problem of facilities needs also to be resolved in conjunction with the quantity flow of Halal meat products from farms to abattoirs and from abattoirs to retailers.
Design/methodology/approach
First, a deterministic multi-objective mixed integer linear programming model was developed and used for optimizing the proposed RFID-based HMSC network toward a comprised solution based on four conflicting objectives as described above. Second, a stochastic programming model was developed and used for examining the impact on the number of Halal meat products by altering the value of integrity percentage. The ε-constraint approach and the modified weighted sum approach were proposed for acquisition of non-inferior solutions obtained from the developed models. Furthermore, the Max-Min approach was used for selecting the best solution among them.
Findings
The research outcome shows the applicability of the developed models using a real case study. Based on the computational results, a reasonable ROI can be achievable by implementing RFID into the HMSC network.
Research limitations/implications
This work addresses interesting avenues for further research on exploring the HMSC network design under different types of uncertainties and transportation means. Also, environmentalism has been becoming increasingly a significant global problem in the present century. Thus, the presented model could be extended to include the environmental aspects as an objective function.
Practical implications
The model can be utilized for food supply chain designers. Also, it could be applied to realistic problems in the field of supply chain management.
Originality/value
Although there were a few studies focusing on the configuration of a number of HMSC networks, this area is overlooked by researchers. The study shows the developed methodology can be a useful tool for designers to determine a cost-effective design of food supply chain networks.
Details
Keywords
Yanhao Sun, Tao Zhang, Shuxin Ding, Zhiming Yuan and Shengliang Yang
In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to…
Abstract
Purpose
In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to propose a scientific and reasonable centralized traffic control (CTC) system risk assessment method.
Design/methodology/approach
First, system-theoretic process analysis (STPA) is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis. Then, to enhance the accuracy of weight calculation, the fuzzy analytical hierarchy process (FAHP), fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and entropy weight method are employed to calculate the subjective weight, relative weight and objective weight of each index. These three types of weights are combined using game theory to obtain the combined weight for each index. To reduce subjectivity and uncertainty in the assessment process, the backward cloud generator method is utilized to obtain the numerical character (NC) of the cloud model for each index. The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system. This cloud model is used to obtain the CTC system's comprehensive risk assessment. The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud. Finally, this process yields the risk assessment results for the CTC system.
Findings
The cloud model can handle the subjectivity and fuzziness in the risk assessment process well. The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.
Originality/value
This study provides a cloud model-based method for risk assessment of CTC systems, which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment, achieving effective risk assessment of CTC systems. It can provide a reference and theoretical basis for risk management of the CTC system.
Details
Keywords
The missing travel time data for roads is a common problem encountered by traffic management departments. Tensor decomposition, as one of the most widely used method for…
Abstract
Purpose
The missing travel time data for roads is a common problem encountered by traffic management departments. Tensor decomposition, as one of the most widely used method for completing missing traffic data, plays a significant role in the intelligent transportation system (ITS). However, existing methods of tensor decomposition focus on the global data structure, resulting in relatively low accuracy in fibrosis missing scenarios. Therefore, this paper aims to propose a novel tensor decomposition model which further considers the local spatiotemporal similarity for fibrosis missing to improve travel time completion accuracy.
Design/methodology/approach
The proposed model can aggregate road sections with similar physical attributes by spatial clustering, and then it calculates the temporal association of road sections by the dynamic longest common subsequence. A similarity relationship matrix in the temporal dimension is constructed and incorporated into the tensor completion model, which can enhance the local spatiotemporal relationship of the missing parts of the fibrosis type.
Findings
The experiment shows that this method is superior and robust. Compared with other baseline models, this method has the smallest error and maintains good completion results despite high missing rates.
Originality/value
This model has higher accuracy for the fibrosis missing and performs good convergence effects in the case of the high missing rate.
Details
Keywords
Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu
Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…
Abstract
Purpose
Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.
Design/methodology/approach
The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.
Findings
Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.
Originality/value
This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.
Details
Keywords
Zirui Zeng, Junwen Xu, Shiwei Zhou, Yufeng Zhao and Yansong Shi
To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of…
Abstract
Purpose
To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance.
Design/methodology/approach
A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm.
Findings
To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact.
Practical implications
This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts.
Originality/value
The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.
Details