Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin
This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…
Abstract
This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.
Details
Keywords
Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang
Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the…
Abstract
Purpose
Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this study is to fulfill the weakness of the existed BSS method.
Design/methodology/approach
To deal with this problem, this paper proposes a blind source extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode functions with a multi-shift correlation method.
Findings
Experimental results prove the extracted fault signal can be easily identified through the envelope spectrum. The application of the proposed method is validated using simulated signals and rolling element bearing signals of the train axle.
Originality/value
This paper proposes an underdetermined BSE method based on the EMD and the temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal from the train rolling element bearings show that the proposed method can well extract the bearing fault signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other rotating machinery, such as gears or blades.
Details
Keywords
Yanshuang Mei, Xin Xu and Xupin Zhang
Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated…
Abstract
Purpose
Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated with urban digital transformation, in order to yield detailed insights that can contribute to the formulation of well-informed decisions and strategies in the field of urban development initiatives.
Design/methodology/approach
Through analysis of parallels between urban digital transformation and gyroscope motion in physics, the study developed the urban digital transformation gyroscope model (UDTGM), which comprises of seven core elements. With the balanced panel dataset from 268 cities at and above the prefecture level in China, we validate the dynamic mechanism of this model.
Findings
The findings of this study underscore that the collaboration among infrastructure development, knowledge-driven forces and economic operations markedly bolsters the urban digital transformation gyroscope’s efficacy.
Practical implications
This research introduces a groundbreaking framework for comprehending urban digital transformation, potentially facilitating its balanced and systemic practical implementation.
Originality/value
This study pioneers the UDTGM theoretically and verifies the dynamic mechanism of this model with real data.
Details
Keywords
Yang Li, Yaochen Qin, Liqun Ma and Ziwu Pan
The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau…
Abstract
Purpose
The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau.
Design/methodology/approach
The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described.
Findings
The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November.
Originality/value
This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.
Details
Keywords
Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao
This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…
Abstract
Purpose
This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.
Design/methodology/approach
The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.
Findings
The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.
Originality/value
The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.
Details
Keywords
Fang Wen, Yun Bai, Xin Zhang, Yao Chen and Ninghai Li
This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.
Abstract
Purpose
This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.
Design/methodology/approach
A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway, the minimum headway and the latest end-of-operation time. The objective of the model is to maximize the number of reachable passengers in the end-of-operation period. A solution method based on a preset train service is proposed, which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.
Findings
The results of the case study of Wuhan Metro show that the solution method can obtain high-quality solutions in a shorter time; and the shorter the time interval of passenger flow data, the more obvious the advantage of solution speed; after optimization, the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.
Originality/value
Existing research results only consider the passengers who take the last train. Compared with previous research, considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination. Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network, but due to the decrease in passenger demand, postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.
Details
Keywords
Jian Li, Xinlei Yan, Feifei Zhao and Xin Zhao
The purpose of this paper is to solve the problem that the location of the initiation point cannot be measured accurately in the shallow underground space, this paper proposes a…
Abstract
Purpose
The purpose of this paper is to solve the problem that the location of the initiation point cannot be measured accurately in the shallow underground space, this paper proposes a method, which is based on fusion of multidimensional vibration sensor information, to locate single shallow underground sources.
Design/methodology/approach
First, in this paper, using the characteristics of low multipath interference and good P-wave polarization in the near field, the adaptive covariance matrix algorithm is used to extract the polarization angle information of the P-wave and the short term averaging/long term averaging algorithm is used to extract the first break travel time information. Second, a hybrid positioning model based on travel time and polarization angle is constructed. Third, the positioning model is taken as the particle update fitness function of quantum-behaved particle swarm optimization and calculation is performed in the hybrid positioning model. Finally, the experiment verification is carried out in the field.
Findings
The experimental results show that, with root mean square error, spherical error probable and fitness value as evaluation indicators, the positioning performance of this method is better than that without speed prediction. And the positioning accuracy of this method has been improved by nearly 30%, giving all of the three tests a positioning error within 0.5 m and a fitness less than 1.
Originality/value
This method provides a new idea for high-precision positioning of shallow underground single source. It has a certain engineering application value in the fields of directional demolition of engineering blasting, water inrush and burst mud prediction, fuze position measurement, underground initiation point positioning of ammunition, mine blasting monitoring and so on.
Details
Keywords
Singapore has had a dramatic spike in coronavirus infections in early 2020, with thousands of new cases linked to clusters in migrant workers (MWs) dormitories. To control the…
Abstract
Singapore has had a dramatic spike in coronavirus infections in early 2020, with thousands of new cases linked to clusters in migrant workers (MWs) dormitories. To control the spread, the Government attempted to isolate the dormitories, test workers and move symptomatic patients into quarantine facilities. But those measures have left thousands of them trapped in their dormitories, living in cramped conditions that make social distancing near impossible. This paper investigates how COVID-19 has impacted the lives of these workers in varied ways and highlights the migrant workers' belief if Singapore’s effort has been enough for them during the COVID-19 pandemic? The focus is mainly on the low-skilled workers from India and Bangladesh, who are prone to be affected in various ways by COVID-19. My collected data show that migrant workers are grateful to the Singapore state for the support extended during COVID-19. I used the concept of subcultures to explain the condition of the workers in the state of Singapore. Because they expect so little social protection from the state, they are genuinely grateful for its support during the pandemic.
Details
Keywords
Shangkun Liang, Rong Fu and Yanfeng Jiang
Independent directors are important corporate decision participants and makers. Based on the Chinese cultural background, this paper interprets the listing order of independent…
Abstract
Purpose
Independent directors are important corporate decision participants and makers. Based on the Chinese cultural background, this paper interprets the listing order of independent directors as independent directors’ status, exploring their influence on the corporate research and development (R&D) behavior.
Design/methodology/approach
This paper studies A-share listed firms in China from 2008 to 2018 as the sample. The main method is ordinary least square (OLS) regression. We also use other methods to deal with endogenous problems, such as the firm fixed effect method, change model method, two-stage instrumental variable method, and Heckman two-stage method.
Findings
(1) Higher independent directors’ status attribute to more effective exertion of supervision and consultation function, and positively enhance the corporate R&D investment. The increase of the independent director’ status by one standard deviation will increase the R&D investment by 4.6%. (2) The above effect is more influential in firms with stronger traditional culture atmosphere, higher information opacity and higher performance volatility. (3) High-status independent directors promote R&D investment by improving the scientificity of R&D evaluation and reducing information asymmetry. (4) The enhancing effect of independent director’ status on R&D investment is positively associated with the firm’s patent output and market value.
Originality/value
This paper contributes to understanding the relationship between the independent directors’ status and their duty execution from an embedded cultural background perspective. The findings of the study enlighten the improvement of corporate governance efficiency and the healthy development of the capital market.
Details
Keywords
Mohammad Islam Biswas, Md. Shamim Talukder and Atikur Rahman Khan
Firms have already begun integrating artificial intelligence (AI) as a replacement for conventional performance management systems owing to its technological superiority. This…
Abstract
Purpose
Firms have already begun integrating artificial intelligence (AI) as a replacement for conventional performance management systems owing to its technological superiority. This transition has sparked a growing interest in determining how employees perceive and respond to performance feedback provided by AI as opposed to human supervisors.
Design/methodology/approach
A 2 x 2 between-subject experimental design was employed that was manipulated into four experimental conditions: AI algorithms, AI data, highly experienced human supervisors and low-experience human supervisor conditions. A one-way ANOVA and Welch t-test were used to analyze data.
Findings
Our findings revealed that with a predefined fixed formula employed for performance feedback, employees exhibited higher levels of trust in AI algorithms, had greater performance expectations and showed stronger intentions to seek performance feedback from AI algorithms than highly experienced human supervisors. Conversely, when performance feedback was provided by human supervisors, even those with less experience, in a discretionary manner, employees' perceptions were higher compared to similar feedback provided by AI data. Moreover, additional analysis findings indicated that combined AI-human performance feedback led to higher levels of employees' perceptions compared to performance feedback solely by AI or humans.
Practical implications
The findings of our study advocate the incorporation of AI in performance management systems and the implementation of AI-human combined feedback approaches as a potential strategy to alleviate the negative perception of employees, thereby increasing firms' return on AI investment.
Originality/value
Our study represents one of the initial endeavors exploring the integration of AI in performance management systems and AI-human collaboration in providing performance feedback to employees.