Search results
1 – 10 of 106Ali Hashemi Baghi and Jasmin Mansour
Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can…
Abstract
Purpose
Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can be customized and their simultaneous variation has conflicting impacts on various properties of printed parts such as dimensional accuracy (DA) and surface finish. These properties could be improved by optimizing the values of these parameters.
Design/methodology/approach
In this paper, four process parameters, namely, print speed, build orientation, raster width, and layer height which are referred to as “input variables” were investigated. The conflicting influence of their simultaneous variations on the DA of printed parts was investigated and predicated. To achieve this goal, a hybrid Genetic Algorithm – Artificial Neural Network (GA-ANN) model, was developed in C#.net, and three geometries, namely, U-shape, cube and cylinder were selected. To investigate the DA of printed parts, samples were printed with a central through hole. Design of Experiments (DoE), specifically the Rotational Central Composite Design method was adopted to establish the number of parts to be printed (30 for each selected geometry) and also the value of each input process parameter. The dimensions of printed parts were accurately measured by a shadowgraph and were used as an input data set for the training phase of the developed ANN to predict the behavior of process parameters. Then the predicted values were used as input to the Desirability Function tool which resulted in a mathematical model that optimizes the input process variables for selected geometries. The mean square error of 0.0528 was achieved, which is indicative of the accuracy of the developed model.
Findings
The results showed that print speed is the most dominant input variable compared to others, and by increasing its value, considerable variations resulted in DA. The inaccuracy increased, especially with parts of circular cross section. In addition, if there is no need to print parts in vertical position, the build orientation should be set at 0° to achieve the highest DA. Finally, optimized values of raster width and layer height improved the DA especially when the print speed was set at a high value.
Originality/value
By using ANN, it is possible to investigate the impact of simultaneous variations of FFF machines’ input process parameters on the DA of printed parts. By their optimization, parts of highly accurate dimensions could be printed. These findings will be of significant value to those industries that need to produce parts of high DA on FFF machines.
Details
Keywords
Ali Hashemi and Parsa Yazdanpanah Qaraei
This paper aims to present an accurate magnetic equivalent circuit for modeling the cylindrical electromagnet so that by analyzing it, the magnetic flux density in different parts…
Abstract
Purpose
This paper aims to present an accurate magnetic equivalent circuit for modeling the cylindrical electromagnet so that by analyzing it, the magnetic flux density in different parts of the electromagnet, as well as its lifting force, can be calculated.
Design/methodology/approach
The structure of the electromagnet is divided into parts that can be modeled by lumped element parameters. Mathematical equations for calculating these elements are presented and proved. The axial symmetry of the cylindrical electromagnet made it possible to use planar circuits for its modeling. To increase the accuracy of the proposed equivalent circuit, attention has been paid to the leakage flux as well as the nonlinear behavior of the ferromagnetic core. Also, the curvature of the magnetic flux path is considered in the calculation of the corner permeances of the core.
Findings
The magnetic flux density in different parts of the electromagnet was calculated using nodal analysis of the circuit and compared to the results of the finite element method. Also, a test bed was established to measure the lifting force of the electromagnet. Comparing the results shows a difference of less than 3% which indicate the good accuracy of the proposed circuit. In addition, due to the curvature of the flux path, there is a no-flux region in the center of the disk, the extent of which depends on the thickness of the disk and the diameter of the middle leg.
Originality/value
Magnetic equivalent circuit is a new contribution to analyze the cylindrical electromagnet and calculate its lifting force with good accuracy. The circuit lumped elements can be quickly calculated using mathematical equations and software such as MATLAB according to the actual path of the magnetic flux. Compared to other methods, the proposed circuit analyzes the electromagnet in a shorter period of time. This is the most important advantage of the proposed circuit model.
Details
Keywords
Ali Hashemi, Hamed Taheri and Mohammad Dehghani
To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit…
Abstract
Purpose
To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined.
Design/methodology/approach
The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results.
Findings
The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature.
Research limitations/implications
In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work.
Originality/value
By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.
Details
Keywords
Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…
Abstract
Purpose
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.
Design/methodology/approach
For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.
Findings
The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.
Research limitations/implications
In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.
Originality/value
Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.
Details
Keywords
Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei
Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…
Abstract
Purpose
Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.
Design/methodology/approach
Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.
Findings
The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.
Originality/value
This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.
Details
Keywords
Ali Fazli and Mohammad Hosein Kazemi
This paper aims to propose a new linear parameter varying (LPV) controller for the robot tracking control problem. Using the identification of the robot dynamics in different work…
Abstract
Purpose
This paper aims to propose a new linear parameter varying (LPV) controller for the robot tracking control problem. Using the identification of the robot dynamics in different work space points about modeling trajectory based on the least square of error algorithm, an LPV model for the robotic arm is extracted.
Design/methodology/approach
Parameter set mapping based on parameter component analysis results in a reduced polytopic LPV model that reduces the complexity of the implementation. An approximation of the required torque is computed based on the reduced LPV models. The state-feedback gain of each zone is computed by solving some linear matrix inequalities (LMIs) to sufficiently decrease the time derivative of a Lyapunov function. A novel smoothing method is used for the proposed controller to switch properly in the borders of the zones.
Findings
The polytopic set of the resulting gains creates the smooth switching polytopic LPV (SS-LPV) controller which is applied to the trajectory tracking problem of the six-degree-of-freedom PUMA 560 robotic arm. A sufficient condition ensures that the proposed controller stabilizes the polytopic LPV system against the torque estimation error.
Practical implications
Smoothing of the switching LPV controller is performed by defining some tolerances and creating some quasi-zones in the borders of the main zones leading to the compressed main zones. The proposed torque estimation is not a model-based technique; so the model variation and other disturbances cannot destroy the performance of the suggested controller. The proposed control scheme does not have any considerable computational load, because the control gains are obtained offline by solving some LMIs, and the torque computation is done online by a simple polytopic-based equation.
Originality/value
In this paper, a new SS-LPV controller is addressed for the trajectory tracking problem of robotic arms. Robot workspace is zoned into some main zones in such a way that the number of models in each zone is almost equal. Data obtained from the modeling trajectory is used to design the state-feedback control gain.
Details
Keywords
Ali Mohammed Ali, Manar Hamid Jasim and Bashar Dheyaa Hussein Al-Kasob
The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the…
Abstract
Purpose
The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the first-order shear deformation beam theory. Also, a simulation of impact process is carried out by ABAQUS finite element (FE) code.
Design/methodology/approach
In theoretical formulation, first strains and stresses are obtained, then kinetic and potential energies are written, and using a combination of Ritz and Lagrange methods, a set of system of motion equations in the form of mass, stiffness and force matrices is obtained. Finally, the motion equations are solved using Runge–Kutta fourth order method.
Findings
The von Mises stress contours at the impact point and contact force from the ABAQUS simulation are illustrated and it is revealed that the theoretical solution is in good agreement with the FE code. The effect of changes in projectile speed, projectile diameter and projectile mass on the results is carefully examined with particular attention to evaluate histories of the impact force and beam recess. One of the important results is that changes in projectile speed have a greater effect on the results than changes in projectile diameter, and also changes in projectile mass have the least effect.
Originality/value
This paper presents a combination of methods of energy, Ritz and Lagrange and also FE code to simulate the problem of sandwich beams under low velocity impact.
Details
Keywords
Kashif Irshad, Amjad Ali Pasha, Mohammed K. Al Mesfer, Mohd Danish, Manoj Kumar Nayak, Ali Chamkha and Ahmed M. Galal
The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention…
Abstract
Purpose
The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention because of the potential utilizations that they possess in modern industries, for example, heat exchangers, solar energy collectors and cooling of electronic apparatuses. This study aims to investigate the second law and thermal behavior of non-Newtonian double-diffusive natural convection (DDNC) of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by a magnetic field.
Design/methodology/approach
For the governing equations of the complicated and practical system with all considered parameters to be solved via a formidable numerical approach, the finite element method acts as an approach to achieving the desired solution. This method allows us to gain a detailed solution to the studied geometry.
Findings
This investigation has been executed for the considered parameters of range, such as power-law index, baffle length, Lewis number, buoyancy ratio, Hartmann number and Rayleigh number. The main results reveal that isothermal and concentration lines are significantly more distorted, indicating intensified concentration and temperature distributions because of the growth of baffle length (L). Nuave decreases by 8.4% and 0.8% while it enhances by 49.86% and 33.87%, respectively, because of growth in the L from 0.1 to 0.2 and 0.2 to 0.3.
Originality/value
Such a comprehensive study on the second law and thermal behavior of DDNC of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by magnetic field has not yet been carried out.
Details
Keywords
Sujood, Ruksar Ali, Saba Irfan and Sheeba Hamid
The aim of this paper is to review and categorise the body of existing research in order to better understand the state of food tourism. The primary objective of this study is to…
Abstract
Purpose
The aim of this paper is to review and categorise the body of existing research in order to better understand the state of food tourism. The primary objective of this study is to identify emerging themes in the area of food tourism and to highlight the relationships among them.
Design/methodology/approach
This research consists of a systematic literature review of academic articles from the Scopus and Web of Science databases.
Findings
Ten themes of Food Tourism emerged from the analysis, i.e. Food Tourism and Local Food, Food Tourism and Sustainability, Food Tourism and Economy, Food Tourism and Food waste management, Food Tourism and Culture, Food Tourism and Environment, Food Tourism and Information Technology, Food Tourism and COVID-19, Food Tourism and Post pandemic consumer trust and Food Tourism and Tourism and Hospitality sector.
Research limitations/implications
This study elaborates on the theoretical pieces of evidence on the connection between food and tourism. Not only limited to food tourism, but this paper also contributes to the literature in the area of economy, sustainability, post-COVID-19, food waste management, environment and technological innovations in food tourism.
Originality/value
This study contributes to a deeper understanding of the topic at hand. The study begins by systematically examining the topic to offer a thorough and in-depth analysis of food tourism. There is not a single study which has covered these many themes of food tourism, which makes it an important contribution to the literature.
Details
Keywords
This paper aims to develop precise statements (standards) to describe the knowledge and skills that should be possessed by Islamic education (IE) teacher candidates who receive…
Abstract
Purpose
This paper aims to develop precise statements (standards) to describe the knowledge and skills that should be possessed by Islamic education (IE) teacher candidates who receive their initial preparation in various international higher-education institutions. These statements must be compatible with the requirements and guidelines for building specialized standards set by the Council for Accreditation of Educator Preparation (CAEP), so that they can be used for accreditation and improving quality.
Design/methodology/approach
Two panels of IE experts participated in developing and validating the standards, using a combination of Delphi and content validity methods. Alongside this research activity, management activity ensured that the process ran smoothly, as the researcher coordinated panels, allocated resources and tracked progress during standard development.
Findings
Twenty-six components divided into five standards were developed into a final list based on the panels.
Originality/value
This study provides standards for the preparation of IE teachers in higher-education institutions that can be applied in different countries and geographical regions. Furthermore, it aims to make the subject of IE more comparable with other academic disciplines, and appropriate for CAEP accreditation.
Details