An estimated 52% of Pakistan’s population is under the age of 25, and like their counterparts elsewhere around the globe, Generation Z in Pakistan was born into a world overrun…
Abstract
An estimated 52% of Pakistan’s population is under the age of 25, and like their counterparts elsewhere around the globe, Generation Z in Pakistan was born into a world overrun with technology, Internet, and social media. This generation of consumers possess information processing ability that is much faster than any other generation. Generation Z consumers in Pakistan are active users of social media platforms connecting with local and international users, brands and exchanging information, photos, videos, ideas, and opinions with people inside and outside Pakistan. To develop insights into the consumption patterns, preferences, attitudes, and preferences of this segment of consumers, this chapter provides an overview of cultural and social values underpinning consumption choices and social media preferences. The chapter identifies and discusses the dynamic nature of Generation Z in Pakistan by identifying some of its defining features: the generation consists of confident, able, and multilingual consumers who are largely collectivists in orientation but shows strong individualistic tendencies. Such consumers have a global outlook and actively seek engagement with brands via digital platforms and influencer marketers expecting authenticity, respect, and equality. The chapter discusses work-related implications such as the need for providing transformational leadership and training programs to harness the intellectual skills of Generation Z in Pakistan. The chapter concludes by identifying and discussing issues relevant to handling Generation consumers in Pakistan including effective marketing strategies.
Details
Keywords
Sumaira Qayyum, Muhammad Ijaz Khan, Tasawar Hayat and Ahmed Alsaedi
The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat…
Abstract
Purpose
The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat generation/absorption are incorporated in the thermal equation. Thermo-diffusion effect is also considered. Flow is conducting for time-dependent applied magnetic field. Induced magnetic field is not taken into consideration. Velocity and thermal slip conditions at both the disks are implemented. The flow problem is modeled by using Navier–Stokes equations with entropy generation rate and Bejan number.
Design/methodology/approach
Von Karman transformations are used to reduce the nonlinear governing expressions into an ordinary one and then tackled by homotopy analysis method for convergent series solutions. The nonlinear expressions for total entropy generation rate are obtained with appropriate transformations. The impacts of different flow variables on velocity, temperature, entropy generation rate and Bejan number are described graphically. Velocity, temperature and concentration gradients are discussed in the presence of flow variables.
Findings
Axial, radial and tangential velocity profiles show decreasing trend for larger values of velocity slip parameters. For a larger Brinkman number, the entropy generation increases, while a decreasing trend is noticed for Bejan number.
Originality/value
To the best of the authors’ knowledge, no such analyses have been reported in the literature.
Details
Keywords
Arif Hussain, Muhammad Yousaf Malik, Mair Khan and Taimoor Salahuddin
The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface.
Abstract
Purpose
The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface.
Design/methodology/approach
The fluid momentum problem is mathematically formulated by using the Prandtl–Eyring constitutive law. Also, the non-Fourier heat flux model is considered to disclose the heat transfer characteristics. The governing problem contains the nonlinear partial differential equations with appropriate boundary conditions. To facilitate the computation process, the governing problem is transmuted into dimensionless form via appropriate group of scaling transforms. The numerical technique shooting method is used to solve dimensionless boundary value problem.
Findings
The expressions for dimensionless velocity and temperature are found and investigated under different parametric conditions. The important features of fluid flow near the wall, i.e. wall friction factor and wall heat flux, are deliberated by altering the pertinent parameters. The impacts of governing parameters are highlighted in graphical as well as tabular manner against focused physical quantities (velocity, temperature, wall friction factor and wall heat flux). A comparison is presented to justify the computed results, it can be noticed that present results have quite resemblance with previous literature which led to confidence on the present computations.
Originality/value
The computed results are quite useful for researchers working in theoretical physics. Additionally, computed results are very useful in industry and daily-use processes.
Details
Keywords
Abstract
Purpose
In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing.
Design/methodology/approach
The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables.
Findings
As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case.
Practical implications
The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc.
Originality/value
From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.
Details
Keywords
Mehtab Khan, Adnan Daud Khan, Muhammad Jawad, Zahoor Ahmad, Naveed Ur Rehman and Muhammad Israr
This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application…
Abstract
Purpose
This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application and space requirements.
Design/methodology/approach
Proposed design comprised of modules, and modules are separated by using nonmagnetic materials. Movable part of the proposed design of LOA is composed of permanent magnets (PMs) having axial magnetization direction and tubular structure. Stator of the proposed design is composed of one coil individually in a module. Dimensions of the design parameters are optimized through parametric analysis using COMSOL Multi Physics software. This design is analyzed up to three modules and their response in term of electromagnetic (EM) force and stroke are presented. Influence of adding modules is analyzed for both directions of direct current (DC) and alternating input loadings.
Findings
Proposed LOA shows linear increase in magnitude of EM force by adding modules. Motor constant of the investigated LOA is 264 N/A and EM force per PM mass is 452.389 N/kg, that shows significant improvement. Moreover, proposed LOA operates in feasible region of stroke for compressor application. Furthermore, this design uses axially magnetized PMs which are low cost and available in compact tubular structure.
Originality/value
Proposed LOA shows the influence of adding modules and its effect in term of EM force is analyzed for DC and alternating current (AC). Moreover, overall performance and structural topology is compared with state-of-the-art designs of LOA. Improvement with regard of motor constant and EM force per PM mass shows originality and scope of this paper.
Details
Keywords
Junaid Ahmad Khan, M. Mustafa, T. Hayat, Mustafa Turkyilmazoglu and A. Alsaedi
The purpose of the present study is to explore a three-dimensional rotating flow of water-based nanofluids caused by an infinite rotating disk.
Abstract
Purpose
The purpose of the present study is to explore a three-dimensional rotating flow of water-based nanofluids caused by an infinite rotating disk.
Design/methodology/approach
Mathematical formulation is performed using the well-known Buongiorno model which accounts for the combined influence of Brownian motion and thermophoresis. The recently suggested condition of passively controlled wall nanoparticle volume fraction has been adopted.
Findings
The results reveal that temperature decreases with an increase in thermophoresis parameter, whereas it is negligibly affected with a variation in the Brownian motion parameter. Axial velocity is negative because of the downward flow in the vertical direction.
Originality/value
Two- and three-dimensional streamlines are also sketched and discussed. The computations are found to be in very good agreement with the those of existing studies in the literature for pure fluid.
Details
Keywords
Farah Nadzirah Jamrus, Anuar Ishak, Iskandar Waini and Umair Khan
In recent times, ternary hybrid nanofluid has garnered attention from scientist and researchers due to its improved thermal efficiency. This study aims to delve into the…
Abstract
Purpose
In recent times, ternary hybrid nanofluid has garnered attention from scientist and researchers due to its improved thermal efficiency. This study aims to delve into the examination of ternary hybrid nanofluid (Al2O3–Cu–TiO2/water), particularly concerning axisymmetric flow over a nonlinearly permeable stretching/shrinking disk. In addition, the investigation of convective boundary conditions and thermal radiation effects is also considered within the context of the described flow problem.
Design/methodology/approach
Mathematical formulations representing this problem are reduced into a set of ordinary differential equations (ODEs) using similarity transformation. The MATLAB boundary value problem solver is then used to solve the obtained set of ODEs. The impact of considered physical parameters such as suction parameter, radiation parameter, nonlinear parameter, nanoparticle volumetric concentration and Biot number on the flow profiles as well as the physical quantities is illustrated in graphical form.
Findings
The findings revealed the thermal flux for the nonlinearly shrinking disk is approximately 1.33%, significantly higher when compared to the linearly shrinking disk. Moreover, the existence of dual solutions attributed to the nonlinear stretching/shrinking disk is unveiled, with the first solution being identified as the stable and reliable solution through temporal stability analysis.
Practical implications
Understanding ternary hybrid nanofluid behavior and flow has applications in engineering, energy systems and materials research. This study may help develop and optimize nanofluid systems like heat exchangers and cooling systems.
Originality/value
The study of flow dynamics across nonlinear stretching/shrinking disk gains less attention compared to linear stretching/shrinking geometries. Many natural and industrial processes involve nonlinear changes in boundary shapes or sizes. Understanding flow dynamics over nonlinear shrinking/stretching disks is therefore essential for applications in various fields such as materials processing, biomedical engineering and environmental sciences. Hence, this study highlights the axisymmetric flow over a nonlinear stretching/shrinking disk using ternary hybrid nanofluid composed of alumina (Al2O3), copper (Cu) and titania (TiO2). Besides, this study tackles a complex problem involving multiple factors such as suction, radiation and convective boundary conditions. Analyzing such complex systems can provide valuable insights into real-world phenomena where multiple factors interact.
Details
Keywords
Ali Akbar Izadi and Hamed Rasam
Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…
Abstract
Purpose
Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.
Design/methodology/approach
Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.
Findings
Investigating critical parameters such as Darcy number (10−4 ≤ DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.
Originality/value
Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.
Details
Keywords
Armand Kasztelan and Adam Sulich
The transformation towards the Green Economy (GE) in Poland is a relatively new topic for researchers, policymakers and business practitioners. A comprehensive picture of the…
Abstract
Research Background
The transformation towards the Green Economy (GE) in Poland is a relatively new topic for researchers, policymakers and business practitioners. A comprehensive picture of the shift towards the GE can help mentioned groups translate theoretical assumptions into practice.
Purpose of the Article
This chapter presents the assessment of Poland's shift towards the GE, measured by the proposed Green Transformation Index (GTI).
Methodology
The set of GE indicators was elaborated in Structured Literature Review (SLR) variation method. Then, this set of indicators was compared with the Statistics Poland (GUS) secondary data and employed in the taxonometric calculation methods.
Findings
In the result, the GTI for the Polish economy was proposed and calculated between 2007 and 2020. The GTI allowed us to present a dynamic analysis of the transformation towards GE in Poland.
Details
Keywords
Sustainable energy like renewable energy plays a critical role in achieving sustainable development goals including energy security in emerging economics. BRICS (Brazil, Russia…
Abstract
Sustainable energy like renewable energy plays a critical role in achieving sustainable development goals including energy security in emerging economics. BRICS (Brazil, Russia, India, China and South Africa) constitutes about 23% of the world’s GDP, 40% of the world’s population and 36% share of the supply of primary energy in the world. Obviously the Bloc has tremendous potential in influencing the global sustainable clean energy transition with the advantages like lowering the costs of renewable, boosting employment in the sector of green energy, enhancement of energy security and improvement of local air quality. Despite the existence of varieties of renewable energy resources in the BRICS economies, renewable energy resources are found underdeveloped. The major objectives of this chapter are to assess progress of different forms of energy especially renewable energy, impact of development of renewable energy on carbon emission and policy issues in renewable energy development in the context of sustainable energy development of BRICS countries.