Search results

1 – 10 of 94
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 7 January 2020

Zhiqiang Huang, Lei He, ZhaoXin Gao, Yingqi Jia, Yewei Kang, Dou Xie and Chunli Fu

This paper aims to introduce a new acoustic positioning method to solve the problem of space positioning for online inspection robots within the storage tank.

172

Abstract

Purpose

This paper aims to introduce a new acoustic positioning method to solve the problem of space positioning for online inspection robots within the storage tank.

Design/methodology/approach

The proposed positioning system comprises two acoustic signal emitters and two receivers. Emitters are brought by the robot into the storage tank. Receivers are mounted on the external edge of the storage tank floor. The spatial coordinate values and motion directions of the robot in the storage tank are calculated by using the proposed acoustic positioning algorithm.

Findings

The experiment results and positioning error analysis indicate that the method can obtain the data of robotic space coordinates and motion orientation, while the positioning error of the method can be less than 20 cm. The accuracy reaches the positioning technology level of other tank online inspection robots.

Originality/value

This method not only expands the positioning of the inspection robots from 2D plane to 3D space but also significantly reduces the number of positioning sensors carried by a robot and improves the safety of a robot in the tank.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 16 February 2022

Meiling Wang, Qin Li, Zhiqiang Huang, Weiji Qian, Xiong Chen, Qiang Li and Tianhua Lai

This study aims to solve the premature failure of the rubber stator due to wear, reduce the frictional resistance moment of the screw pump to solve the problem of a model of…

177

Abstract

Purpose

This study aims to solve the premature failure of the rubber stator due to wear, reduce the frictional resistance moment of the screw pump to solve the problem of a model of Daqing oilfield screw pump oil recovery system shutdown after the difficult start.

Design/methodology/approach

For the first time, the rotor surface of a screw pump was treated with dot-matrix texture to study the effect of dot matrix texture on the tribological performance of the stator-rotor friction subsets of screw pump. Reciprocating friction tests with different texture morphologies (S-shape, double tongue) and angular parameters (0°, 45° and 90°) were conducted at 10% of the texture area and pump silicone grease.

Findings

When point texture was added to the surface of the rotor sample, the friction coefficient and wear quantity of the sample were lower than those of the surface without texture treatment, and the double tongue 0° combination showed the best tribological properties. At this time, the average coefficient of friction and wear is reduced by 22.8% and 62%, 28.6% and 64.8%.

Originality/value

The introduction of texture can effectively improve the tribological performance of progressive screw pumps, and this paper provides important theoretical and experimental support for the design of progressive screw pumps in practical applications.

Details

Industrial Lubrication and Tribology, vol. 74 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 3 October 2021

Zhiqiang Huang, Zhongquan Yin and Wei Wu

The purpose of this study is to solve the oil drill pipe joints and casing excessive wear problems and to improve the drill pipe joint-casing wear resistance and anti-friction…

145

Abstract

Purpose

The purpose of this study is to solve the oil drill pipe joints and casing excessive wear problems and to improve the drill pipe joint-casing wear resistance and anti-friction properties.

Design/methodology/approach

On the surface of the drill pipe joints using oxyacetylene flame bead weld (BW) wear-resistant welding wire ARNCO-100XTTM prepares welding layer, high-velocity oxygen fuel (HVOF) Cr3C275-NiCr25 prepares coating and subsonic flame spray and remelt (SFSR) Ni60 prepares coating, then comparing and analyzing the friction and wear of the three types of wear-resistant layers and the casing under the condition of 1.8 g/cm3 mud drilling fluid lubrication. The wear resistance and anti-friction performance of the drill pipe joints were evaluated based on the wear situation, finally revealing its friction and wear mechanisms.

Findings

Three types of wear-resistant layers can improve the surface wear resistance of drill pipe joints, the wear-resistant layer and the substrate are well combined and the welding layers and coating are both dense and uniform. The wear resistance of the HVOF-Cr3C275-NiCr25 coating is 10.9 times that of the BW-ARNCO-100XTTM weld layer, and the wear resistance of the SFSR-Ni60 weld layer is 2.45 times that of the BW-ARNCO-100XTTM weld layer. The anti-friction properties of SFSR-Ni60 welding layer is the best, followed by HVOF-Cr3C275-NiCr25 coating, and the anti-friction properties of BW-ARNCO-100XTTM welding layer is the worst among the three.

Originality/value

The research results of this paper have great practical value in the process and material of improving the wear resistance and anti-friction performance of the drill pipe joint casing.

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 19 October 2018

Zhiqiang Huang, Lei He, Xinxia Li, Yewei Kang and Dou Xie

The purpose of this paper is to propose a buoyancy-gravity adjustment device and a fuzzy intelligent controller for the depth control of a storage tank in-service inspection robot.

206

Abstract

Purpose

The purpose of this paper is to propose a buoyancy-gravity adjustment device and a fuzzy intelligent controller for the depth control of a storage tank in-service inspection robot.

Design/methodology/approach

The structure of the robot is first designed based on the construction of the bottom of a crude oil tank and explosion-proof requirements. The buoyancy-gravity adjustment system is used to control the vertical movement of the robot. The motion analysis of the robot indicates that the diving or rising process is influenced by hydrodynamic force and umbilical cord tension. Considering the nonlinear model in-depth control, a fuzzy intelligent controller is proposed to address the depth control problem. The primary fuzzy controller is used to compensate for initial error with fast response. The secondary fuzzy controller is activated by an intelligent switch to eliminate the steady error.

Findings

The proposed fuzzy controller can better solve the complicated hydrodynamic problem of the coupling of umbilical cord and the robot during depth control by classifying the error values of depth, velocity and acceleration.

Originality/value

The buoyancy-gravity adjustment device and the depth control system of the robot can move through the heating coils by safe and accurate diving or rising.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2017

Guangming Han, Zhiqiang Hou and Yuanshui Huang

Selecting the development and renewal of residential areas has caused significant confusion in the construction of a new countryside with the rapid development of information and…

151

Abstract

Selecting the development and renewal of residential areas has caused significant confusion in the construction of a new countryside with the rapid development of information and computer technology. The application of digital assistive technology in traditional settlement planning has received increasing attention in recent years. Thus, this study combined the folk culture of traditional settlement, local unique landform, and climate environment. Digital technology was used as the starting point. Traditional settlement planning and green update design were studied with the help of a digital building software. The planning of Shuanglong Village and the residential green renewal design were taken as examples. Shuanglong Village's overall planning and design was presented and showed that its road traffic was clearly planned. The rational use of local land was attained. The landscape of Shuanglong Village was then designed. Practice has proven that the research on traditional settlement planning and green renewal design based on digital assistive technology can provide the basis for such activities.

Details

Open House International, vol. 42 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Access Restricted. View access options
Article
Publication date: 16 June 2023

Xin Feng, Xu Wang and Mengxia Qi

In the era of the digital economy, higher demands are placed on versatile talents, and the cultivation of students with innovative and entrepreneurial abilities has become an…

426

Abstract

Purpose

In the era of the digital economy, higher demands are placed on versatile talents, and the cultivation of students with innovative and entrepreneurial abilities has become an important issue for the further development of higher education, thus leading to extensive and in-depth research by many scholars. The study summarizes the characteristics and patterns of dual-innovation education at different stages of development, hoping to provide a systematic model for the development of dual-innovation education in China and make up for the shortcomings.

Design/methodology/approach

This paper uses Citespace software to visualize and analyze the relevant literature in CNKI and Web of Science databases from a bibliometric perspective, focusing on quantitative analysis in terms of article trends, topic clustering, keyword co-linear networks and topic time evolution, etc., to summarize and sort out the development of innovation and entrepreneurship education research at home and abroad.

Findings

The study found that the external characteristics of the literature published in the field of bi-innovation education in China and abroad are slightly different, mainly in that foreign publishers are more closely connected and have formed a more stable ecosystem. In terms of research hotspots, China is still in a critical period of reforming its curriculum and teaching model, and research on the integration of specialization and creative education is in full swing, while foreign countries focus more on the cultivation of students' entrepreneurial awareness and the enhancement of individual effectiveness. In terms of cutting-edge analysis, the main research directions in China are “creative education”, “new engineering”, “integration of industry and education” and “rural revitalization”.

Originality/value

Innovation and entrepreneurship education in China is still in its infancy, and most of the studies lack an overall overview and comparison of foreign studies. Based on the econometric analysis of domestic and foreign literature, this paper proposes a path for domestic innovation and entrepreneurship education reform that can make China's future education reform more effective.

Access Restricted. View access options
Article
Publication date: 3 September 2021

Yanjie Chen, Weiwei Zhan, Yibin Huang, Zhiqiang Miao and Yaonan Wang

This paper aims to investigate the distributed formation control problem for a multi-quadrotor unmanned aerial vehicle system without linear velocity feedbacks.

212

Abstract

Purpose

This paper aims to investigate the distributed formation control problem for a multi-quadrotor unmanned aerial vehicle system without linear velocity feedbacks.

Design/methodology/approach

A nonlinear controller is proposed based on the orthogonal group SE(3) to obviate singularities and ambiguities of the traditional parameterized attitude representations. A cascade structure is applied in the distributed controller design. The inner loop is responsible for attitude control, and the outer loop is responsible for translational dynamics. To ensure a linear-velocity-free characteristic, some auxiliary variables are introduced to construct virtual signals in distributed controller design. The stability analysis of the proposed distributed control method by the Lyapunov function is provided as well.

Findings

A group of four quadrotors with constant reference linear velocity and a group of six quadrotors with varying reference linear velocity are adopted to verify the effectiveness of the proposed strategy.

Originality/value

This is a new innovation for multi-robot formation control method to improve assembly automation.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 7 September 2021

Ming Huang, Zhiqiang Zhang, Peizi Wei, Fei Liu and Youliang Ding

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support…

147

Abstract

Purpose

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support excitation and optimize the semi-active control schemes based on magneto-rheological (MR) dampers considering reference index as well as economical efficiency.

Design/methodology/approach

The finite element model of the long-span suspension bridge is established in MATLAB and ANSYS software, which includes different input currents and semi-active control conditions. Six apparent wave velocities are used to conduct non-linear time history analysis in order to consider the seismic response influence in primary members under traveling wave effect. The parameters α and β, which are key parameters of classical linear optimal control algorithm, are optimized and analyzed taking into account five different combinations to obtain the optimal control scheme.

Findings

When the apparent wave velocity is relatively small, the influence on the structural response is oscillatory. Along with the increase of the apparent wave velocity, the structural response is gradually approaching the response under uniform excitation. Semi-active control strategy based on MR dampers not only restrains the top displacement of main towers and relative displacement between towers and girders, but also affects the control effect of internal forces. For classical linear optimal control algorithm, the values of two parameters (α and β) are 100 and 8 × 10–6 considering the optimal control effect and economical efficiency.

Originality/value

The emphasis of this study is the traveling wave effect of the triple-tower suspension bridge under multi-support excitation. Meanwhile, the optimized parameters of semi-active control schemes using MR dampers have been obtained, providing relevant references in improving the seismic performance of three-tower suspension bridge.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 24 August 2021

Ziao Huang, Xiaoshan Liu, Guoqiu He, Zhiqiang Zhou, Bin Ge, Peiwen Le, Jiaqi Pan and Xiaojun Xu

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

149

Abstract

Purpose

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Design/methodology/approach

By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer.

Findings

In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content.

Originality/value

There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 3 April 2017

Zhiqiang Yu, Qing Shi, Huaping Wang, Ning Yu, Qiang Huang and Toshio Fukuda

The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale.

582

Abstract

Purpose

The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale.

Design/methodology/approach

This paper first briefly discussed fundamental issues associated with precise operation of a robotic manipulator on a macro- to micro/nanoscale. Second, this paper described and compared the characteristics of basic components (i.e. mechanical parts, actuators, sensors and control algorithm) of the robotic manipulator. Specifically, commonly used mechanisms of the manipulator were classified and analyzed. In addition, intuitive meaning and applications of its actuator explained and compared in details. Moreover, related research studies on general control algorithm and visual control that are used in a robotic manipulator to achieve precise operation have also been discussed.

Findings

Remarkable achievements in dexterous mechanical design, excellent actuators, accurate perception, optimized control algorithms, etc., have been made in precise operations of a robotic manipulator. Precise operation is critical for dealing with objects which need to be manufactured, modified and assembled. The operational accuracy is directly affected by the performance of mechanical design, actuators, sensors and control algorithms. Therefore, this paper provides a categorization showing the fundamental concepts and applications of these characteristics.

Originality/value

This paper presents a categorization of the mechanical design, actuators, sensors and control algorithms of robotic manipulators in the macro- to micro/nanofield for precise operation.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 94
Per page
102050