Search results

1 – 10 of 46
Article
Publication date: 1 August 2001

Zhenyu Huang and Prashant Palvia

There is an increasing need to implement a total business solution which supports major functionalities of a business. Enterprise resource planning (ERP) software is designed to…

15526

Abstract

There is an increasing need to implement a total business solution which supports major functionalities of a business. Enterprise resource planning (ERP) software is designed to meet this need, and has been widely adopted by organizations in developed countries. Meanwhile, ERP is beginning to appear in many organizations of developing countries. Little research has been conducted to compare the implementation practices of ERP in developed vs developing countries. Our research shows that ERP technology faces additional challenges in developing countries related to economic, cultural, and basic infrastructure issues. This article identifies a range of issues concerning ERP implementation by making a comparison of advanced and developing countries.

Details

Business Process Management Journal, vol. 7 no. 3
Type: Research Article
ISSN: 1463-7154

Keywords

Content available
Article
Publication date: 1 January 2008

1234

Abstract

Details

Management Research News, vol. 31 no. 1
Type: Research Article
ISSN: 0140-9174

Article
Publication date: 2 September 2024

Li Shaochen, Zhenyu Liu, Yu Huang, Daxin Liu, Guifang Duan and Jianrong Tan

Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship…

Abstract

Purpose

Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship between hands and operated objects and lack the modeling of subtle hand motions, which leads to a decline in accuracy for fine-grained action recognition. This paper aims to model the hand-object interactions and hand movements to realize high-accuracy assembly action recognition.

Design/methodology/approach

In this paper, a novel multi-stream hand-object interaction network (MHOINet) is proposed for assembly action recognition. To learn the hand-object interaction relationship in assembly sequence, an interaction modeling network (IMN) comprising both geometric and visual modeling is exploited in the interaction stream. The former captures the spatial location relation of hand and interacted parts/tools according to their detected bounding boxes, and the latter focuses on mining the visual context of hand and object at pixel level through a position attention model. To model the hand movements, a temporal enhancement module (TEM) with multiple convolution kernels is developed in the hand stream, which captures the temporal dependences of hand sequences in short and long ranges. Finally, assembly action prediction is accomplished by merging the outputs of different streams through a weighted score-level fusion. A robotic arm component assembly dataset is created to evaluate the effectiveness of the proposed method.

Findings

The method can achieve the recognition accuracy of 97.31% and 95.32% for coarse and fine assembly actions, which outperforms other comparative methods. Experiments on human-robot collaboration prove that our method can be applied to industrial production.

Originality/value

The author proposes a novel framework for assembly action recognition, which simultaneously leverages the features of hands, objects and hand-object interactions. The TEM enhances the representation of dynamics of hands and facilitates the recognition of assembly actions with various time spans. The IMN learns the semantic information from hand-object interactions, which is significant for distinguishing fine assembly actions.

Details

Robotic Intelligence and Automation, vol. 44 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 2 May 2022

Ao Li, Dingli Zhang, Zhenyu Sun, Jun Huang and Fei Dong

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to…

Abstract

Purpose

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.

Design/methodology/approach

In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway. An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.

Findings

Microseismic events can be divided into high density area, medium density area and low density area according to the density distribution of microseismic events. The positions where the cumulative distribution frequencies of microseismic events are 60 and 80% are identified as the boundaries between high and medium density areas and between medium and low density areas, respectively. The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock, which is affected by the grade of surrounding rock and the span of tunnel. The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters. The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock. The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed. Based on the depth of high excavation damage zone of surrounding rock, the prestressed anchor cable (rod) is designed, and the safety of anchor cable (rod) design parameters is verified by the deformation results of surrounding rock.

Originality/value

The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable (rod).

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 17 May 2022

Jinrong Huang, Zongjun Wang, Zhenyu Jiang and Qin Zhong

Previous studies have mostly discussed the impact of environmental policy on enterprise innovation, but the discussion on how turbulence in environmental policy may affect firms'…

1106

Abstract

Purpose

Previous studies have mostly discussed the impact of environmental policy on enterprise innovation, but the discussion on how turbulence in environmental policy may affect firms' green innovation has been insufficient. This paper explores the effect of environmental policy uncertainty on corporate green innovation in the turnover of environmental protection officials (EPOT) context.

Design/methodology/approach

The authors manually collected the data on the EPOT of 280 Chinese prefecture-level cities, and used the Poisson regression model to conduct empirical analyses based on the panel data of 1472 Chinese listed manufacturing firms from 2008 to 2017.

Findings

The results show that environmental policy uncertainty leads firms to reduce their green patent applications only for green invention patent applications. Such an effect is more pronounced in non-state-owned enterprises (non-SOEs). In addition, when the new directors of the Ecology and Environmental Bureau take office through promotions or are no more than 55 years old, the negative effect is more obvious, but there is no significant difference regardless of whether new directors have worked in environmental protection departments.

Originality/value

First, this paper supplements the research on the antecedents of corporate green innovation from the perspective of environmental policy uncertainty and extends the applications of real options theory. Second, this paper expands the research on the government–business relationship from the EPOT perspective.

Details

European Journal of Innovation Management, vol. 26 no. 6
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 19 March 2021

Zhenyu Lu and Ning Wang

Dynamic movement primitives (DMPs) is a general robotic skill learning from demonstration method, but it is usually used for single robotic manipulation. For cloud-based robotic…

Abstract

Purpose

Dynamic movement primitives (DMPs) is a general robotic skill learning from demonstration method, but it is usually used for single robotic manipulation. For cloud-based robotic skill learning, the authors consider trajectories/skills changed by the environment, rebuild the DMPs model and propose a new DMPs-based skill learning framework removing the influence of the changing environment.

Design/methodology/approach

The authors proposed methods for two obstacle avoidance scenes: point obstacle and non-point obstacle. For the case with point obstacles, an accelerating term is added to the original DMPs function. The unknown parameters in this term are estimated by interactive identification and fitting step of the forcing function. Then a pure skill despising the influence of obstacles is achieved. Using identified parameters, the skill can be applied to new tasks with obstacles. For the non-point obstacle case, a space matching method is proposed by building a matching function from the universal space without obstacle to the space condensed by obstacles. Then the original trajectory will change along with transformation of the space to get a general trajectory for the new environment.

Findings

The proposed two methods are certified by two experiments, one of which is taken based on Omni joystick to record operator’s manipulation motions. Results show that the learned skills allow robots to execute tasks such as autonomous assembling in a new environment.

Originality/value

This is a new innovation for DMPs-based cloud robotic skill learning from multi-scene tasks and generalizing new skills following the changes of the environment.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 30 July 2019

Zongjun Wang and Zhenyu Jiang

The purpose of this paper is to investigate how R&D originality functions in an open innovation process after the introduction of knowledge spillovers (KSs).

Abstract

Purpose

The purpose of this paper is to investigate how R&D originality functions in an open innovation process after the introduction of knowledge spillovers (KSs).

Design/methodology/approach

To examine the research framework, the authors use hierarchical regression based on questionnaire data from 211 emerging enterprises in China.

Findings

Consistent with the proposed framework, the authors find that the KS effect mediates the positive relationship between openness and innovation performance. In addition, R&D originality weakens the impact of the KS effect on innovation performance.

Research limitations/implications

One limitation is that the questionnaire survey the authors choose for data collection has some natural defects; furthermore, the testing method and research framework need to be improved.

Practical implications

Several implications of the findings for managerial practices are discussed.

Originality/value

First, the research expands the existing theoretical construct by introducing the KS effect into the open innovation process; second, the authors reveal the negative impact of R&D originality on the open innovation process.

Details

European Journal of Innovation Management, vol. 23 no. 4
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 17 October 2018

Jiang Xie, Haolei Mou, Xuan Su and Zhenyu Feng

This paper aims to present an evaluation method for energy-absorption characteristics of thin-walled composite structures with random uncertain parameters.

Abstract

Purpose

This paper aims to present an evaluation method for energy-absorption characteristics of thin-walled composite structures with random uncertain parameters.

Design/methodology/approach

The mechanical properties of T700/3234 are obtained by material performance tests and energy-absorption results are obtained by quasi-static crushing tests of thin-walled composite circular tubes. The indicators of triggering specific load (TSL) and specific energy absorption (SEA) are introduced and calculated to determine the energy-absorption characteristics and validate the probability finite element analysis model. The uncertainty in the parameters contain the machining tolerance for the thickness and inner diameter of composite circular tubes and are associated with the composite material system. The Plackett–Burman method is used to choose the measurement parameters. Then, the response surface method is used to build a second-order function of random uncertain parameters versus TSL/SEA, and the Monte Carlo method is finally used to obtain the probabilities of TSL and SEA.

Findings

The finite element models can accurately simulate the initial peak load, load-displacement curve and SEA value. The random uncertain parameter method can be used to evaluate the energy-absorption characteristics of thin-walled composite circular tubes.

Practical implications

The presented evaluation method for energy-absorption characteristics of thin-walled composite structures is an approach that considers uncertain parameters to increase the simulation accuracy and decrease the computational burden.

Originality/value

This methodology considers uncertain parameters in evaluating the energy-absorption characteristics of thin-walled composite structures, and this methodology can be applied to other thin-walled composite structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 July 2022

Weiqing Wang, Zengbin Zhang, Liukai Wang, Xiaobo Zhang and Zhenyu Zhang

The purpose of this study is to forecast the development performance of important economies in a smart city using mixed-frequency data.

Abstract

Purpose

The purpose of this study is to forecast the development performance of important economies in a smart city using mixed-frequency data.

Design/methodology/approach

This study introduces reverse unrestricted mixed-data sampling (RUMIDAS) to support vector regression (SVR) to develop a novel RUMIDAS-SVR model. The RUMIDAS-SVR model was estimated using a quadratic programming problem. The authors then use the novel RUMIDAS-SVR model to forecast the development performance of all high-tech listed companies, an important sector of the economy reflecting the potential and dynamism of urban economic development in Shanghai using the mixed-frequency consumer price index (CPI) producer price index (PPI), and consumer confidence index (CCI) as predictors.

Findings

The empirical results show that the established RUMIDAS-SVR is superior to the competing models with regard to mean absolute error (MAE) and root-mean-squared error (RMSE) and multi-source macroeconomic predictors contribute to the development performance forecast of important economies.

Practical implications

Smart city policy makers should create a favourable macroeconomic environment, such as controlling inflation or stabilising prices for companies within the city, and companies within the important city economic sectors should take initiative to shoulder their responsibility to support the construction of the smart city.

Originality/value

This study contributes to smart city monitoring by proposing and developing a new model, RUMIDAS-SVR, to help the construction of smart cities. It also empirically provides strategic insights for smart city stakeholders.

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Content available
Article
Publication date: 23 September 2013

Craig Wilson and Zhenyu Wu

1137

Abstract

Details

International Journal of Managerial Finance, vol. 9 no. 4
Type: Research Article
ISSN: 1743-9132

1 – 10 of 46