Search results

1 – 5 of 5
Article
Publication date: 21 September 2023

Yunchu Yang, Hengyu Wang, Hangyu Yan, Yunfeng Ni and Jinyu Li

The heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer…

Abstract

Purpose

The heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer properties and fabrics' structure, yarn properties and predict the effective thermal conductivity of single layer woven fabrics by a parametric mathematical model.

Design/methodology/approach

First, the weave unit was divided into four types of element regions, including yarn overlap regions, yarn crossing regions, yarn floating regions and pore regions. Second, the number and area proportion of each region were calculated respectively. Some formulas were created to calculate the effective thermal conductivity of each element region based on serial model, parallel model or series–parallel mixing model. Finally, according to the number and area proportion of each region in weave unit, the formulas were established to calculate the fabric overall effective thermal conductivity in thickness direction based on the parallel models.

Findings

The influences of yarn spacing, yarn width, fabric thickness, the compressing coefficients of air layers and weave type on the effective thermal conductivity were further discussed respectively. In this model, the relationships between the effective thermal conductivity and each parameter are some polynomial fitting curves with different orders. Weave type affects the change of effective thermal conductivity mainly through the numbers of different elements and their area ratios.

Originality/value

In this model, the formulas were created respectively to calculate the effective thermal conductivity of each element region and whole weave unit. The serial–parallel mixing characteristics of yarn and surrounding air are considered, as well as the compression coefficients of air layers. The results of this study can be further applied to the optimal design of mixture fabrics with different warp and filling yarn densities or different yarn thermal properties.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 March 2023

Jinyu Li, Hangyu Yan, Yunfeng Ni, Linlin Fu and Yunchu Yang

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of…

Abstract

Purpose

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of electrical heating fabric and the thermal comfort of human skin at low temperature.

Design/methodology/approach

The combined model of skin-electrical heating fabric system was established to simulate human skin tissue wearing electrical heating clothing. A series of simulation experiments are designed on the basis of verifying the effectiveness of the combined model. The temperature distribution inside the combined model and on the skin surface under different heating powers is simulated and analyzed. At the same time, the influence of ambient temperature on the thermal performance of electrical heating fabric was explored.

Findings

The skin model with blood vessels reflected the temperature change of human skin wearing electrical heating clothing. The higher the heating power of the electrical heating fabric was, the greater the temperature of the skin surface changed, the faster the temperature rose and the longer the time required to reach the stable state would be. After the heating element was electrified, it had the greatest effect on the average temperature of the epidermis and dermis, had smaller effect on the average temperature of subcutaneous layer and had little effect on the temperature of blood vessels. When the heating power was the same, the higher the ambient temperature was, the more obvious the heating effect of electrical heating fabric was. Electrical heating fabrics with different heating powers were suitable for different ambient temperature ranges.

Originality/value

A reasonable and effective evaluation method for the thermal comfort of electrical heating fabric was provided by establishing the skin model and combined model of the skin-electrical heating fabric system. It provides a reference for the design and application of electrical heating clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

1146

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 28 July 2020

Xiaocui Xin, Yunxia Wang, Zhaojie Meng, Hao Liu, Yunfeng Yan and Fengyuan Yan

This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE).

Abstract

Purpose

This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE).

Design/methodology/approach

In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed.

Findings

With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE.

Research limitations/implications

The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE.

Practical implications

The result may help to choose the appropriate content.

Originality/value

The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 December 2024

Yunfeng Li, Ruoxuan Li, Ao Tian, Xinming Xu and Hang Zhang

This paper aims to study the influence of different seal structure parameters and working conditions on the air-oil two-phase flow characteristics and leakage characteristics of…

Abstract

Purpose

This paper aims to study the influence of different seal structure parameters and working conditions on the air-oil two-phase flow characteristics and leakage characteristics of the seal cavity in the bearing cavity of the aero-engine spindle bearing tester.

Design/methodology/approach

In this paper, the VOF method and RNG k-ε turbulence model are used to explore the flow characteristics and leakage characteristics of the labyrinth seal cavity of an aero-engine spindle bearing tester under the condition of air-oil two-phase flow.

Findings

The distribution of the lubricating oil is related to the sealing clearance and the air-oil ratio. The amount of oil leakage increases with increasing of sealing chamber clearance, air-oil ratio and inlet velocity and decreases with increasing curvature and speed. The amount of air leakage increases with sealing clearance and inlet velocity.

Originality/value

In comparison to the pure air-phase flow field, the air-oil two-phase flow field can more accurately simulate the lubricating oil flow in the sealing chamber.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 5 of 5