Search results
1 – 10 of 18Yuanpeng Cheng, Zili Li, Yalei Zhao, Yazhou Xu, Qianqian Liu and Yu Bai
The purpose of this paper was to investigate the corrosion behaviour of API X65 pipeline steel in the simulated CO2/oil/water emulsion using weight loss technique, potentiodynamic…
Abstract
Purpose
The purpose of this paper was to investigate the corrosion behaviour of API X65 pipeline steel in the simulated CO2/oil/water emulsion using weight loss technique, potentiodynamic polarization technique and characterization of the corroded surface techniques.
Design/methodology/approach
The weight loss analysis, electrochemical study and surface investigation were carried out on API X65 pipeline steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behaviour of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of temperature, CO2 partial pressure, water cut and flow velocity on the CO2 corrosion rate of API X65 pipeline steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction.
Findings
The results showed that water cut was the main controlling factor of API X65 steel corrosion under the conditions of CO2/oil/water multiphase flow, and it had significant impact on corrosion morphology. In the case of higher water cut or pure water phase, general corrosion occurred on the steel surface. While water cut was below 70 per cent, corrosion morphology transformed into localized corrosion, crude oil decreased corrosion rate significantly and played a role of inhibitor. Crude oil hindered the corrosion scales from being dissolved by corrosive medium and changed dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales; thus, it influenced the corrosion rate. The primary corrosion product of API X65 steel was ferrous carbonate, which could act as a protective film at low water cut so that the corrosion rate can be reduced.
Originality/value
The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.
Details
Keywords
Yazhou Mao, Yang Jianxi, Jinchen Ji, Wenjing Xu and Quanyuan Guo
Currently, there is a lack of fast and highly accurate on analytical solution of Reynolds equation for evaluating the characteristics of surface textured bearing. This paper aims…
Abstract
Purpose
Currently, there is a lack of fast and highly accurate on analytical solution of Reynolds equation for evaluating the characteristics of surface textured bearing. This paper aims to develop such an analytical solution of Reynolds equation for an effective analysis of the characteristics of surface textured bearings.
Design/methodology/approach
By using the separation of variables method and mean eigenvalue method, the analytical solution is constructed. The CFD simulations and experimental results are used to validate the correctness of the analytical solution.
Findings
The analytical solution can accurately evaluate the characteristics of textured bearings. It is found that the larger the eccentricity ratio and aspect ratio, the greater the oil film force. It also found that the smaller the eccentricity ratio, the larger the Sommerfeld number S. When eccentricity ratio e = 0.65, the attitude angles of different oil boundaries are same. The effect of different aspect ratios on dynamic stiffness and damping coefficient generally follows a same trend. It is numerically shown that the critical speed of rotor-bearing is 3500 rpm.
Originality/value
The analytical solution provides a simple yet effective way to study the characteristics of surface textured bearings.
Details
Keywords
Yazhou Mao, Yang Jianxi, Xu Wenjing and Liu Yonggang
The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors…
Abstract
Purpose
The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester.
Design/methodology/approach
The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model.
Findings
As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better.
Originality/value
The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.
Details
Keywords
Shenglei Wu, Jianhui Liu, Yazhou Wang, Jumei Lu and Ziyang Zhang
Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue…
Abstract
Purpose
Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue life's prediction accuracy. Based on this, this research intends to analyze the fatigue data with small sample characteristics, and then realize the life assessment under different stress levels.
Design/methodology/approach
Firstly, the Bootstrap method and the principle of fatigue life percentile consistency are used to realize sample aggregation and information fusion. Secondly, the classical outlier detection algorithm (DBSCAN) is used to check the sample data. Then, based on the stress field intensity method, the influence of the non-uniform stress field near the notch root on the fatigue life is analyzed, and the calculation methods of the fatigue damage zone radius and the weighting function are revised. Finally, combined with Weibull distribution, a framework for assessing multiaxial low-cycle fatigue life has been developed.
Findings
The experimental data of Q355(D) material verified the model and compared it with the Yao’s stress field intensity method. The results show that the predictions of the model put forward in this research are all located within the double dispersion zone, with better prediction accuracies than the Yao’s stress field intensity method.
Originality/value
Aiming at the fatigue test data with small sample characteristics, this research has presented a new method of notch fatigue analysis based on the stress field intensity method, which is combined with the Weibull distribution to construct a low-cycle fatigue life analysis framework, to promote the development of multiaxial fatigue from experimental studies to practical engineering applications.
Details
Keywords
Haiying Liu, Xin Jiang, Yazhou Yue and Guangen Gao
The study aims to propose reverse processing solution to improve the performance of strapdown inertial navigation system (SINS) initial alignment and SINS-/global positioning…
Abstract
Purpose
The study aims to propose reverse processing solution to improve the performance of strapdown inertial navigation system (SINS) initial alignment and SINS-/global positioning system- (GPS) integrated navigation. The proposed scheme can be well applied in the fields of aircraft and aerospace navigation.
Design/methodology/approach
For the SINS alignment phase, a fast initial alignment scheme is proposed: the initial value of reverse filter is determined by the final result of forward filter, and then, the reverse filter is carried out using the stored data. Multiple iterations are performed until the accuracy is satisfied. For the SINS-/GPS-integrated phase, a forward–reverse navigation algorithm is proposed: first, the standard forward filter is used, and then, the reverse filter is carried out using the initial value determined by the forward filter, and the final fusion results are achieved by the weighted smoothing of the forward and reverse filtering results.
Findings
The simulation and the actual test results show that in the initial alignment stage, the proposed reverse processing method can obviously shorten the SINS alignment time and improve the alignment accuracy. In the SINS-/GPS-integrated navigation data fusion stage, the proposed forward–reverse data fusion processing can, obviously, improve the performance of the navigation solution.
Practical implications
The proposed reverse processing technology has an important application in improving the accuracy of navigation and evaluating the performance of real-time navigation. The proposed scheme can be not only used for SINS-/GPS-integrated system but also applied to other integrated systems for general aviation aircraft.
Originality/value
Compared with the common forward filtering algorithm, the proposed reverse scheme can not only shorten alignment time and improve alignment accuracy but also improve the performance of the integrated navigation.
Details
Keywords
Wenyuan Liu, Chunde Piao, Yazhou Zhou and Chaoqi Zhao
The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining…
Abstract
Purpose
The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining area can be divided into zones with different degrees of risk, and the prevention measures can be taken for the areas predicted to have large deformation.
Design/methodology/approach
A similar-material model was built by geological and mining conditions of Zhangzhuang Coal Mine. The evolution characteristics of overburden strain were studied by using the distributed optical fiber sensing (DOFS) technology and the predictive model about overburden deformation was established by applying machine learning. The modeling method of the predictive model based on the similar-material model test was summarized. Finally, this method was applied to engineering.
Findings
The strain value predicted by the proposed model was compared with the actual measured value and the accuracy is as high as 97%, which proves that it is feasible to combine DOFS technology with machine learning and introduce it into overburden deformation prediction. When this method was applied to engineering, it also showed good performance.
Originality/value
This paper helps to promote the application of machine learning in the geosciences and mining engineering. It provides a new way to solve similar problems.
Details
Keywords
Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma
The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…
Abstract
Purpose
The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.
Design/methodology/approach
The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.
Findings
The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.
Originality/value
In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.
Details
Keywords
Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao
This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.
Abstract
Purpose
This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.
Design/methodology/approach
M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.
Findings
The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.
Originality/value
The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/
Details
Keywords
Yazhou Mao, Daqing Li, Lilin Li and Jingyang Zheng
This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing…
Abstract
Purpose
This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing were represented. It provides a design direction for solving the tribological problem of rotor-bearing system.
Design/methodology/approach
In this paper, the variation of surface texture parameters (e.g. texture diameter, d; area density, sp; and depth, hp) were analyzed based on finite difference method. The optimal surface texture parameters were obtained by designing orthogonal experiments, and the relationship between friction and wear properties and microstructure was studied via combining electron probe microanalyzer, scanning electron microscope, X-ray diffractometer and friction and wear testing machine.
Findings
Dimensionless film pressure P increased as the d increased, whereas P first increased and then decreased as the sp and hp increased, and the maximum P was got as sp = 15% and hp = 25 µm, respectively. The friction coefficient of textured surface with suitable parameters was effectively reduced and the textured surface with the best antifriction effect was 5#. Orthogonal experimental design analysis showed that the influence order of factors on friction coefficient was as follows: sp > sp × d > d > d × hp > hp > sp × hp and the friction coefficient first decreased and then increased as the sp, d and hp increased. In addition, the friction and wear mechanism of textured bearing were three body friction and abrasive wear as the matrix structure and hard phase were a single β phase and Mn5Si3, respectively. While the antifriction mechanism of textured surface was able to store abrasive particles and secondary hydrodynamic lubrication was formed.
Originality/value
The sample with reasonable texture parameter design can effectively reduce friction and wear of hydrodynamic journal bearing without reducing the service life, which can provide a reference for improving the lubrication performance and mechanical efficiency of rotor-bearing system.
Details
Keywords
Yazhou Wang, Guoliang Qin, Ximeng Ye and Zhenzhong Bao
The purpose of this paper is to develop a numerical framework based on the accurate spectral element method (SEM) to simulate the mixed convective heat transfer within a porous…
Abstract
Purpose
The purpose of this paper is to develop a numerical framework based on the accurate spectral element method (SEM) to simulate the mixed convective heat transfer within a porous enclosure with three adiabatic thin baffles of different lengths in nine cases and analyze the effects of several parameters.
Design/methodology/approach
The authors develop an improved time-splitting method to solve the Darcy–Brinkman–Forchheimer model. No extra assumptions are introduced for the intermediate velocity, and the final velocity field satisfies the incompressible constraint strictly compared with the classical method. The governing equations are split into a pure convection problem, a Stokes problem and a thermal diffusion problem. The least-squares variation is adopted for the Stokes problem, and the Galerkin variation is used for the other two problems, such that the pressure and velocity can be discretized with the same interpolation order, which benefits the numerical accuracy and program design.
Findings
Regarding the method, the excellent spectral accuracy, the capability of discretizing complex computational regions and the improved time-splitting methods make SEM an effective tool to accurately predict the non-Darcy convective heat transfer; as for the numerical tests, it is observed that weakened convection and heat transfer are induced by the increasing length of the baffles. The flow and heat transfer in channel 1 is only related to the length of baffle 1 because of the downward-driven right sidewall, and it is more difficult for baffle 3 to form the secondary flow on its tip.
Originality/value
A novel numerical framework for Darcy–Brinkman–Forchheimer model is developed, expanding the application of SEM for simulating non-Darcy convective heat transfer to improve the numerical accuracy. Numerical results and analysis for flow and heat fields could help designers understand the control of heat transfer using adiabatic baffles better.
Details