Yazhou Mao, Yang Jianxi, Jinchen Ji, Wenjing Xu and Quanyuan Guo
Currently, there is a lack of fast and highly accurate on analytical solution of Reynolds equation for evaluating the characteristics of surface textured bearing. This paper aims…
Abstract
Purpose
Currently, there is a lack of fast and highly accurate on analytical solution of Reynolds equation for evaluating the characteristics of surface textured bearing. This paper aims to develop such an analytical solution of Reynolds equation for an effective analysis of the characteristics of surface textured bearings.
Design/methodology/approach
By using the separation of variables method and mean eigenvalue method, the analytical solution is constructed. The CFD simulations and experimental results are used to validate the correctness of the analytical solution.
Findings
The analytical solution can accurately evaluate the characteristics of textured bearings. It is found that the larger the eccentricity ratio and aspect ratio, the greater the oil film force. It also found that the smaller the eccentricity ratio, the larger the Sommerfeld number S. When eccentricity ratio e = 0.65, the attitude angles of different oil boundaries are same. The effect of different aspect ratios on dynamic stiffness and damping coefficient generally follows a same trend. It is numerically shown that the critical speed of rotor-bearing is 3500 rpm.
Originality/value
The analytical solution provides a simple yet effective way to study the characteristics of surface textured bearings.
Details
Keywords
Yazhou Mao, Daqing Li, Lilin Li and Jingyang Zheng
This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing…
Abstract
Purpose
This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing were represented. It provides a design direction for solving the tribological problem of rotor-bearing system.
Design/methodology/approach
In this paper, the variation of surface texture parameters (e.g. texture diameter, d; area density, sp; and depth, hp) were analyzed based on finite difference method. The optimal surface texture parameters were obtained by designing orthogonal experiments, and the relationship between friction and wear properties and microstructure was studied via combining electron probe microanalyzer, scanning electron microscope, X-ray diffractometer and friction and wear testing machine.
Findings
Dimensionless film pressure P increased as the d increased, whereas P first increased and then decreased as the sp and hp increased, and the maximum P was got as sp = 15% and hp = 25 µm, respectively. The friction coefficient of textured surface with suitable parameters was effectively reduced and the textured surface with the best antifriction effect was 5#. Orthogonal experimental design analysis showed that the influence order of factors on friction coefficient was as follows: sp > sp × d > d > d × hp > hp > sp × hp and the friction coefficient first decreased and then increased as the sp, d and hp increased. In addition, the friction and wear mechanism of textured bearing were three body friction and abrasive wear as the matrix structure and hard phase were a single β phase and Mn5Si3, respectively. While the antifriction mechanism of textured surface was able to store abrasive particles and secondary hydrodynamic lubrication was formed.
Originality/value
The sample with reasonable texture parameter design can effectively reduce friction and wear of hydrodynamic journal bearing without reducing the service life, which can provide a reference for improving the lubrication performance and mechanical efficiency of rotor-bearing system.
Details
Keywords
Yazhou Mao, Yang Jianxi, Xu Wenjing and Liu Yonggang
The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors…
Abstract
Purpose
The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester.
Design/methodology/approach
The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model.
Findings
As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better.
Originality/value
The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.
Details
Keywords
Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao
This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.
Abstract
Purpose
This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.
Design/methodology/approach
M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.
Findings
The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.
Originality/value
The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/
Details
Keywords
Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou
The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…
Abstract
Purpose
The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.
Design/methodology/approach
The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.
Findings
When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.
Research limitations/implications
Too high concentration of ZnO reduces the performance of MAO coating.
Practical implications
The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.
Originality/value
The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.
Details
Keywords
Guangwen Zhou, Yazhou Jia, Haibo Zhang and Guiping Wang
This paper is to present a new failure model that can be applied to single‐sample failure data of a single system under testing.
Abstract
Purpose
This paper is to present a new failure model that can be applied to single‐sample failure data of a single system under testing.
Design/methodology/approach
The Bayesian method is used for the reliability evaluation. The weighted least squares method is used for determining the parameters of the reliability function.
Findings
The authors have observed the operation of a special computer numerical control (CNC) system for a period of over two years, and maintained a reliability database will all the collected failure data, from which the main source of failures can be identified.
Research limitations/implications
Preliminary research results are very encouraging. However, more work will be necessary to validate the new failure model.
Practical implications
The determination of the parameters of the reliability function of a system under testing helps to identify its failure characteristics and potential quality problems.
Originality/value
It is hoped that the paper can help understand some of the challenges in modeling the failure behavior of special CNC systems.
Details
Keywords
This paper examines diverging views on the Chongqing model, the policy experiment led by Bo Xilai from 2007 to 2012 that was famous for its “red songs” and the campaign against…
Abstract
This paper examines diverging views on the Chongqing model, the policy experiment led by Bo Xilai from 2007 to 2012 that was famous for its “red songs” and the campaign against organized crime. It has impressed both the supporters of socialist identity of China and the supporters of liberal identity and led to an intense debate concerning China’s path of development. This paper attempts to discuss and clarify to what extent the Chongqing model represented a genuine socialist experiment and the implications of the model for China’s future.
Details
Keywords
Zhitian Zhang, Hongdong Zhao, Yazhou Zhao, Dan Chen, Ke Zhang and Yanqi Li
In autonomous driving, the inherent sparsity of point clouds often limits the performance of object detection, while existing multimodal architectures struggle to meet the…
Abstract
Purpose
In autonomous driving, the inherent sparsity of point clouds often limits the performance of object detection, while existing multimodal architectures struggle to meet the real-time requirements for 3D object detection. Therefore, the main purpose of this paper is to significantly enhance the detection performance of objects, especially the recognition capability for small-sized objects and to address the issue of slow inference speed. This will improve the safety of autonomous driving systems and provide feasibility for devices with limited computing power to achieve autonomous driving.
Design/methodology/approach
BRTPillar first adopts an element-based method to fuse image and point cloud features. Secondly, a local-global feature interaction method based on an efficient additive attention mechanism was designed to extract multi-scale contextual information. Finally, an enhanced multi-scale feature fusion method was proposed by introducing adaptive spatial and channel interaction attention mechanisms, thereby improving the learning of fine-grained features.
Findings
Extensive experiments were conducted on the KITTI dataset. The results showed that compared with the benchmark model, the accuracy of cars, pedestrians and cyclists on the 3D object box improved by 3.05, 9.01 and 22.65%, respectively; the accuracy in the bird’s-eye view has increased by 2.98, 10.77 and 21.14%, respectively. Meanwhile, the running speed of BRTPillar can reach 40.27 Hz, meeting the real-time detection needs of autonomous driving.
Originality/value
This paper proposes a boosting multimodal real-time 3D object detection method called BRTPillar, which achieves accurate location in many scenarios, especially for complex scenes with many small objects, while also achieving real-time inference speed.
Details
Keywords
Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma
The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…
Abstract
Purpose
The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.
Design/methodology/approach
The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.
Findings
The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.
Originality/value
In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.