Lina Qiu, Yanan Mao, Aijun Gong, Weiwei Zhang, Yanqiu Cao and Lu Tong
Bdellovibrio bacteriovorus is a gram-negative predatory bacterium which can potentially inhibit microbiologically influenced corrosion by preying on sulfate-reducing bacteria…
Abstract
Purpose
Bdellovibrio bacteriovorus is a gram-negative predatory bacterium which can potentially inhibit microbiologically influenced corrosion by preying on sulfate-reducing bacteria (SRB). However, no researches about the inhibition are reported according to the authors’ knowledge. The purpose of this paper was to investigate the Inhibition effect of B. bacteriovorus on the corrosion of X70 pipeline steel induced by SRB.
Design/methodology/approach
The effect of B. bacteriovorus on the growth of SRB was studied by measuring the optical density at 600 nm (OD600) and sulfate concentration in culture medium. X70 pipeline steel was used as the test material to investigate the anti-corrosion effect of B. bacteriovorus on SRB by conducting electrochemical analysis (including Tafel polarization curves and electrochemical impendence spectroscopy) and weight loss measurement.
Findings
B. bacteriovorus could inhibit the growth of SRB in culture medium by its predation on SRB, which led to decrease of OD600 value and increase of sulfate concentration. The results of electrochemical analysis indicated that B. bacteriovorus had positive inhibition efficiencies on SRB-induced corrosion of X70 pipeline steel. Moreover, corrosion rate of X70 pipeline steel was declined from 19.17 to 3.75 mg·dm-2·day-1 by the presence of B. bacteriovorus.
Originality/value
This is the first report about using B. bacteriovorus to inhibit the corrosion induced by SRB. Compared to other anti-corrosion methods, the microbial inhibition methods exhibit more considerable application value due to its low cost, high efficiency and non-pollution.
Details
Keywords
Yingxin Zhao, Yanqiu Lu and Xiangyang Wang
The purpose of this paper is to propose a model to explore the dynamic process of knowledge management from the perspectives of organizational unlearning and organizational…
Abstract
Purpose
The purpose of this paper is to propose a model to explore the dynamic process of knowledge management from the perspectives of organizational unlearning and organizational relearning, which promote a favorable context for knowledge management.
Design/methodology/approach
The model is proposed based on extensive review of literatures. According to this model, the evolutions of organizational unlearning and organizational relearning are separately analyzed, and the interactions between them are revealed.
Findings
Organizational unlearning and organizational relearning are the indispensable factors to the dynamic knowledge management. Organizational unlearning positively affects the dynamic knowledge management by discarding the outdated and useless knowledge, while organizational relearning has a positive influence on the dynamic knowledge management by acquiring the new knowledge. Organizational unlearning and organizational relearning have synergies on the dynamic knowledge management.
Research limitations/implications
This paper theoretically illuminates the relationships among organizational unlearning, organizational relearning and knowledge management, and doesn't offer an empirical test.
Practical implications
This paper will provide insights to practitioners to better understand the dynamic process of knowledge management. The practitioners need to provide favorable context to ensure that organizational unlearning and organizational relearning can occur.
Originality/value
Most existing studies focused on the inflows of knowledge, but the outflows of knowledge still lack sufficient attention, especially the dynamic process of knowledge management. The framework provides guides in that process.
Details
Keywords
Yongqiang Sun, Yan Zhang, Xiao-Liang Shen, Nan Wang, Xi Zhang and Yanqiu Wu
Although the impacts of trust on information disclosure have been well recognized, the trust building mechanisms in social media are still underexplored. To fill this gap, the…
Abstract
Purpose
Although the impacts of trust on information disclosure have been well recognized, the trust building mechanisms in social media are still underexplored. To fill this gap, the purpose of this paper is to explore two trust building mechanisms, namely, institution-based and transference-based trust building and identify how these two mechanisms vary across gender.
Design/methodology/approach
An online survey was conducted to collect data. The partial least squares method was used to examine the relationships among regulatory effectiveness, three trusting perceptions and disclosure intention. A cross-group path coefficient comparison method was used to test gender differences.
Findings
The results suggest that regulatory effectiveness affects competence- and character-based trust and these impacts are stronger for males than for females. Both competence- and character-based trust influence general trust in members while their impacts vary. Competence-based trust is more important for males while character-based trust is more important for females.
Originality/value
This study contributes to social media literature by identifying the two trust building mechanisms with special attention to the role of regulatory effectiveness and trust transfer. Further, this study also sheds light on how these two mechanisms vary across gender.
Details
Keywords
Mingwei Lin, Yanqiu Chen and Riqing Chen
The purpose of this paper is to make a comprehensive analysis of 354 publications about Pythagorean fuzzy sets (PFSs) from 2013 to 2020 in order to comprehensively understand…
Abstract
Purpose
The purpose of this paper is to make a comprehensive analysis of 354 publications about Pythagorean fuzzy sets (PFSs) from 2013 to 2020 in order to comprehensively understand their historical progress and current situation, as well as future development trend.
Design/methodology/approach
First, this paper describes the fundamental information of these publications on PFSs, including their data information, annual trend and prediction and basic features. Second, the most productive and influential authors, countries/regions, institutions and the most cited documents are presented in the form of evaluation indicators. Third, with the help of VOSviewer software, the visualization analysis is conducted to show the development status of PFSs publications at the level of authors, countries/regions, institutions and keywords. Finally, the burst detection of keywords, timezone review and timeline review are exported from CiteSpace software to analyze the hotspots and development trend on PFSs.
Findings
The annual PFSs publications present a quickly increasing trend. The most productive author is Wei Guiwu (China). Wei Guiwu and Wei Cun have the strongest cooperative relationship.
Research limitations/implications
The implication of this study is to provide a comprehensive perspective for the scholars who take a fancy to PFSs, and it is valuable for scholars to grasp the hotspots in this field in time.
Originality/value
It is the first paper that uses the bibliometric analysis to comprehensively analyze the publications on PFSs. It can help the scholars in the field of PFSs to quickly understand the development status and trend of PFSs.
Details
Keywords
Yanqiu Xia, Wenhao Chen, Yi Zhang, Kuo Yang and Hongtao Yang
The purpose of this study is to investigate the effectiveness of a composite lubrication system combining polytetrafluoroethylene (PTFE) film and oil lubrication in steel–steel…
Abstract
Purpose
The purpose of this study is to investigate the effectiveness of a composite lubrication system combining polytetrafluoroethylene (PTFE) film and oil lubrication in steel–steel friction pairs.
Design/methodology/approach
A PTFE layer was sintered on the surface of a steel disk, and a lubricant with additives was applied to the surface of the steel disk. A friction and wear tester was used to evaluate the tribological properties and insulation capacity. Fourier transform infrared spectrometer was used to analyze the changes in the composition of the lubricant, and X-ray photoelectron spectroscopy was used to analyze the chemical composition of the worn surface.
Findings
It was found that incorporating the PTFE film with PSAIL 2280 significantly enhanced both the friction reduction and insulation capabilities at the electrical contact interface during sliding. The system consistently achieved ultra-low friction coefficients (COF < 0.01) under loads of 2–4 N and elucidated the underlying lubrication mechanisms.
Originality/value
This work not only confirm the potential of PTFE films in insulating electrical contact lubrication but also offer a viable approach for maintaining efficient and stable low-friction wear conditions.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2024-0222/
Details
Keywords
Xiaowei Zhu, Yanqiu Chen, Yu Liu, Yongqiang Deng, Changyu Tang, Weilian Gao, Jun Mei, Junhua Zhao, Tong Liu and Jian Yang
The purpose of this paper is to provide additive manufacturing-based solutions for preparation of elastomeric foam with broaden compressive stress plateau.
Abstract
Purpose
The purpose of this paper is to provide additive manufacturing-based solutions for preparation of elastomeric foam with broaden compressive stress plateau.
Design/methodology/approach
Mechanic models are developed for obtaining designs of foam cell units with enhanced elastic buckling. An experimental approach is taken to fabricate the foams based on direct ink writing technique. Experimental and simulation data are collected to assist understanding of our proposals and solutions.
Findings
A simple tetragonal structured elastomeric foam is proposed and fabricated by direct ink writing, in which its cell unit is theoretically designed by repeating every four filament layers. The foam exhibits a broader stress plateau, because of the pronounced elastic buckling under compressive loading as predicted by the authors’ mechanic modeling. A two-stage stress plateaus as observed in the foam, being attributed to the dual elastic buckling of the cell units along two lateral directions of the XY plane during compression.
Research limitations/implications
Future work should incorporate more microscopic parameters to tune the elastomeric foam for mechanic performance testing on linear elastic deformation and densification of polymer matrix.
Practical implications
Additive manufacturing offers an alternative to fabricate elastomeric foam with controlled cell unit design and therefore mechanics. Our results comment on its broad space for development such superior cushioning or damping material in the fields of vibration and energy absorption.
Originality/value
This work has contributed to new knowledge on preparation of high performance elastomeric foam by providing a better understanding on its cell structure, being printed using direct ink writing machines.
Details
Keywords
Wenzhen Yang, Yu Liu, Jinghua Chen, Yanqiu Chen and Erwei Shang
This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.
Abstract
Purpose
This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.
Design/methodology/approach
An online measurement system for monitoring power and temperature has been integrated into the dual-extruder FDM printer. This system enables a comprehensive study of energy consumption during the dual-material FDM printing process, achieved by breaking down the entire dual-material printing procedure into distinct operational modes. Concurrently, the analysis of the G-code related to the dual-material FDM printing process is carried out.
Findings
This work involves an investigation of the execution instructions that delineate the tooling plan for FDM. We measure and simulate the nozzle temperature distributions with varying filament materials. In our work, we capture intricate details of energy consumption accurately, enabling us to predict fluctuations in power demand across different operational phases of multi-material FDM 3D printing processes.
Originality/value
This work establishes a model for quantifying the energy consumption of the dual-material FDM printing process. This model carries significant implications for enhancing the design of 3D printers and advancing their sustainability in mobile manufacturing endeavors.
Details
Keywords
Yang Liu, Qian Zhang, Jialing Wang, Yawei Shao, Zhengyi Xu, Yanqiu Wang and Junyi Wang
The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.
Abstract
Purpose
The purpose of this paper is to enhance the compatibility of titanium dioxide in epoxy resins and thus the corrosion resistance of the coatings.
Design/methodology/approach
In this work, TiO2 was modified by the mechanochemistry method where mechanical energy was combined with thermal energy to complete the modification. The stability of modified TiO2 in epoxy was analyzed by sedimentation experiment. The modified TiO2-epoxy coating was prepared, and the corrosion resistance of the coating was analyzed by open circuit potential, electrochemical impedance spectroscopy and neutral salt spray test.
Findings
High-temperature mechanical modification can improve the compatibility of TiO2 in epoxy resin. At the same time, the modified TiO2-epoxy coating showed better corrosion resistance. Compared to the unmodified TiO2-epoxy coating, the coating improved the dry adhesion force by 61.7% and the adhesion drop by 33.3%. After 2,300 h of immersion in 3.5 Wt.% NaCl solution, the coating resistance of the modified TiO2 coating was enhanced by nearly two orders of magnitude compared to the unmodified coating.
Originality/value
The authors have grafted epoxy molecules onto TiO2 surfaces using a high-temperature mechanical force modification method. The compatibility of TiO2 with epoxy resin is enhanced, resulting in improved adhesion of the coating to the substrate and corrosion resistance of the coating.
Details
Keywords
Yingjun Zhang, Xue-Jun Cui, Yawei Shao, Yanqiu Wang, Guozhe Meng, Xiu-Zhou Lin, Dongquan Zhong and Dajian Wang
This paper aims to prepare a residual rust epoxy coating by adding different quantities of phytic acid (PA) on the surface of the rusty steel and investigate the corrosion…
Abstract
Purpose
This paper aims to prepare a residual rust epoxy coating by adding different quantities of phytic acid (PA) on the surface of the rusty steel and investigate the corrosion protection of PA and its action mechanisms.
Design/methodology/approach
A residual rust epoxy coating by adding different quantities of PA was prepared on the surface of the rusty steel. The influence of PA on the corrosion resistance of epoxy-coated rusty steel was investigated by means of electrochemical impedance spectroscopy and adhesion testing.
Findings
Results indicated that PA can substantially improve the corrosion resistance of epoxy-coated rusty steel. This improvement is due to the reaction of PA with residual rust and generation of new compounds with protection properties and increased adhesive strength effects on the coating/metal interface. The coating showed better protection performance when 2 per cent PA was added.
Originality/value
Considering the structure of the active groups, PA has strong chelating capability with many metal ions and can form stable complex compounds on the surface of a metal substrate, thereby improving corrosion resistance. In recent years, PA has been reported to be useful in the conversion of coatings or as green corrosion inhibitor. To the best of the authors’ knowledge, few studies have reported the use of PA as a rust converter or residual rust coating. The present work aims to improve the corrosion resistance of residual rust epoxy coating by adding PA.
Details
Keywords
Yanqiu Xia, Chuan Chen, Xin Feng and Zhengfeng Cao
The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of…
Abstract
Purpose
The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of lithium-based complex grease.
Design/methodology/approach
The core-shell Ag@PAN was prepared by a simple method and was introduced into the lithium-based complex grease. The typical properties of Ag@PAN were investigated by scanning electron microscopy (SEM), Fourier transforms infrared spectrometer and thermal gravimetric analyzer. The tribological properties were evaluated under different conditions. After the tribological test, the worn surface was analyzed by SEM and X-ray photoelectron spectroscopy to probe the lubrication mechanisms.
Findings
The prepared Ag@PAN could greatly improve the friction reduction and wear resistance of the friction pair under different conditions. The preferable tribological performances were mainly attributed to the synergism of various lubrication mechanisms including “mending effect,” “rolling effect” and lubricating protective film, and so on.
Originality/value
This study synthesizes a new kind of core-shell Ag@PAN as a lubricant additive, and it possesses preferable friction reduction and anti-wear abilities.