Yahya Alnashri and Hasan Alzubaidi
The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary…
Abstract
Purpose
The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary conditions. Then, the authors show that the GDM provides a comprehensive convergence analysis of several numerical methods for the considered model. The convergence is established without non-physical regularity assumptions on the solutions.
Design/methodology/approach
In this paper, the authors use the GDM to discretise a system of reaction diffusion equations with non-homogeneous Dirichlet boundary conditions.
Findings
The authors provide a generic convergence analysis of a system of reaction diffusion equations. The authors introduce a specific example of numerical scheme that fits in the gradient discretisation method. The authors conduct a numerical test to measure the efficiency of the proposed method.
Originality/value
This work provides a unified convergence analysis of several numerical methods for a system of reaction diffusion equations. The generic convergence is proved under the classical assumptions on the solutions.
Details
Keywords
- A gradient discretisation method (GDM)
- Gradient schemes
- Convergence analysis
- Existence of weak solutions
- Two-dimensional reaction–diffusion Brusselator system
- Dirichlet boundary conditions
- Non-conforming finite element methods
- Finite volume schemes
- Hybrid mixed mimetic (HMM) method
- 35K57
- 65N12
- 65M08