Search results
1 – 9 of 9Qin Li, Huifeng Zhu, Guyue Huang, Zijie Yu, Fei Qiao, Qi Wei, Xinjun Liu and Huazhong Yang
The smart image sensor (SIS) which integrated with both sensor and smart processor has been widely applied in vision-based intelligent perception. In these applications, the…
Abstract
Purpose
The smart image sensor (SIS) which integrated with both sensor and smart processor has been widely applied in vision-based intelligent perception. In these applications, the linearity of the image sensor is crucial for better processing performance. However, the simple source-follower based readout circuit in the conventional SIS introduces significant nonlinearity. This paper aims to design a low-power in-pixel buffer circuit applied in the high-linearity SIS for the smart perception applications.
Design/methodology/approach
The linearity of the SIS is improved by eliminating the non-ideal effects of transistors and cancelling dynamic threshold voltage that changes with the process variation, voltage and temperature. A low parasitic capacitance low leakage switch is proposed to further improve the linearity of the buffer. Moreover, an area-efficient SIS architecture with a sharing mechanism is presented to further reduce the number of in-pixel transistors.
Findings
A low parasitic capacitance low leakage switch and a gate-source voltage pre-storage method are proposed to further improve the linearity of the buffer. Nonlinear effects introduced by parasitic capacitance switching leakage, etc., have been investigated and solved by proposing low-parasitic and low-leakage switches. The linearity is improved without a power-hungry operational amplifier-based calibration circuit and a noticeable power consumption increment.
Originality/value
The proposed design is implemented using a standard 0.18-µm CMOS process with the active area of 102 µm2. At the power consumption of 5.6 µW, the measured linearity is −63 dB, which is nearly 27 dB better than conventional active pixel sensor (APS) implementation. The proposed low-power buffer circuit increase not only the performance of the SIS but also the lifetime of the smart perception system.
Details
Keywords
Zhi Li, Guo Liu, Layne Liu, Xinjun Lai and Gangyan Xu
The purpose of this paper is to propose an effective and economical management platform to realize real-time tracking and tracing for prepackaged food supply chain based on…
Abstract
Purpose
The purpose of this paper is to propose an effective and economical management platform to realize real-time tracking and tracing for prepackaged food supply chain based on Internet of Things (IoT) technologies, and finally ensure a benign and safe food consumption environment.
Design/methodology/approach
Following service-oriented architecture, a flexible layered architecture of tracking and tracing platform for prepackaged food is developed. Besides, to reduce the implementation cost while realizing fine-grained tracking and tracing, an integrated solution of using both the QR code and radio-frequency identification (RFID) tag is proposed. Furthermore, Extensible Markup Language (XML) is adopted to facilitate the information sharing among applications and stakeholders.
Findings
The validity of the platform has been evaluated through a case study. First, the proposed platform is proved highly effective on realizing prepackaged food tracking and tracing throughout its supply chain, and can benefit all the stakeholders involved. Second, the integration of the QR code and RFID technologies is proved to be economical and could well ensure the real-time data collection. Third, the XML-based method is efficient to realize information sharing during the whole process.
Originality/value
The contributions of this paper lie in three aspects. First, the technical architecture of IoT-based tracking and tracing platform is developed. It could realize fine-grained tracking and tracing and could be flexible to adapt in many other areas. Second, the solution of integrating the QR code and RFID technologies is proposed, which could greatly decrease the cost of adopting the platform. Third, this platform enables the information sharing among all the involved stakeholders, which will further facilitate their cooperation on guaranteeing the quality and safety of prepackaged food.
Details
Keywords
Zhichao Wu, Weijing Shu, Limei Song, Xinjun Zhu and Yangang Yang
This paper aims to solve the problems of low stacking efficiency and long production time in the supercapacitor module assembly process, a stacking system based on monocular…
Abstract
Purpose
This paper aims to solve the problems of low stacking efficiency and long production time in the supercapacitor module assembly process, a stacking system based on monocular vision is proposed, including bracket visual positioning, grasping and stacking, and it is applied in actual production.
Design/methodology/approach
To enhance the robustness of the workpiece location method and improve the location accuracy, the improved U-Net network and image processing algorithms are used to segment the collected images. In addition, for the extracted feature points, the objective function that can be globally optimized is obtained by parameterizing the rotation matrix to construct a polynomial equation system and, finally, the equation system is solved to obtain the final pose estimation, which could improve the accuracy of workpiece location.
Findings
The result indicates that the proposed method is successfully performed on the manipulator. Besides, this method can well solve the problem of object reflection on the conveyor belt. The Intersection over Union of the image segmentation of the object is 0.9948, and the Pixel Accuracy is 0.9973, which has a high segmentation accuracy for the image. The error range between the method proposed in this paper and the pose estimation is within 2 mm, and the qualified rate of supercapacitor module stacking products is over 99.8%.
Originality/value
This paper proposes a method of accurately extracting feature points by integrating an improved U-Net network and image processing and uses the workpiece positioning algorithm of the optimal solution PnP problem algorithm. The calculation results show that the algorithm improves the positioning accuracy of the workpiece, realizes the assembly of stacked supercapacitor modules and is applied in industrial production.
Details
Keywords
Shunchong Li, Xinjun Sheng, Honghai Liu and Xiangyang Zhu
This paper aims to describe the design of a multi-degree of freedom (DOF) prosthetic hand prototype implementing postural synergy mechanically, which is actuated by two motors via…
Abstract
Purpose
This paper aims to describe the design of a multi-degree of freedom (DOF) prosthetic hand prototype implementing postural synergy mechanically, which is actuated by two motors via a transmission unit, and is controlled using surface electromyography (sEMG) signal.
Design/methodology/approach
First, an anthropomorphic robotic hand is designed to imitate the human hand. The robotic hand has 18 DOF, 12 of which are actively driven by Bowden cables. Next, a set of different grasp modes are performed on a “full actuation” robotic hand, and principal component analysis (PCA) method is used to extract the first two postural synergies. Then, they are used to design a differential pulley-based transmission unit using two independent inputs to drive 12 output tendons. Finally, two control signals extracted from six channels of sEMG signals are used to proportionally control the two motors for achieving hand posture synthesis.
Findings
Using a differential pulley-based mechanical transmission unit to implement the synthesis of the first two postural synergies can make the prosthetic hand achieve different grasps by two motors, such as power, precision and lateral grasps. It is also feasible to control this “two actuation” prosthetic hand by relating the two-dimensional sEMG inputs with the first two postural synergies.
Originality/value
Mechanical implantation of postural synergies reduces the number of independent actuators without sacrificing the prosthetic hand’s versatility and simplifies its controller. Two-dimensional control extracted from sEMG is mapped into the combination coefficients of postural synergy synthesis. It shows potential application in the practical prosthetic hand.
Details
Keywords
Li Xuemei, Yun Cao, Junjie Wang, Yaoguo Dang and Yin Kedong
Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey…
Abstract
Purpose
Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey systems in marine economics is gaining importance. The purpose of this paper is to summarize and review literature on grey models, providing new directions in their application in the marine economy.
Design/methodology/approach
This paper organized seminal studies on grey systems published by Chinese core journal database – CNKI, Web of Science and Elsevier from 1982 to 2018. After searching the aforementioned database for the said duration, the authors used the CiteSpace visualization tools to analyze them.
Findings
The authors sorted the studies according to their countries/regions, institutions, keywords and categories using the CiteSpace tool; analyzed current research characteristics on grey models; and discussed their possible applications in marine businesses, economy, scientific research and education, marine environment and disasters. Finally, the authors pointed out the development trend of grey models.
Originality/value
Although researches are combining grey theory with fractals, neural networks, fuzzy theory and other methods, the applications, in terms of scope, have still not met the demand. With the increasingly in-depth research in marine economics and management, international marine economic research has entered a new period of development. Grey theory will certainly attract scholars’ attention, and its role in marine economy and management will gain considerable significance.
Details
Keywords
Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…
Abstract
Purpose
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.
Design/methodology/approach
Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.
Findings
The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.
Originality/value
By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.
Details
Keywords
Shihua Lu, Jianqi Zhu, Dongyan Gao, Weiwei Chen and Xinjun Li
This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.
Abstract
Purpose
This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.
Design/methodology/approach
A model of an inclined cavity was set up to simulate the natural convection of supercritical fluid. The influence of inclined angles (30 to approximately 90°) and pressures (8 to approximately 12 MPa) are analyzed. To ascertain flow and heat transfer of supercritical fluid natural convection, this paper conducts a numerical investigation using the lattice Boltzmann method (LBM), which is proven to be precise and convenient.
Findings
The results show that the higher heat transfer performance can be obtained with an inclined angle of 30°. It is also presented that the heat transfer performance under pressure of 10 MPa is the best. In addition, common criterion number correlations of average Nusselt number are also fitted.
Originality/value
These study results can provide a theoretical reference for the study of heat transfer of supercritical fluid natural convection in engineering.
Details
Keywords
Jun Liu, Junyuan Dong, Mingming Hu and Xu Lu
Existing Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic…
Abstract
Purpose
Existing Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic points on the dynamic objects in the image in the mapping can have an impact on the observation of the system, and thus there will be biases and errors in the position estimation and the creation of map points. The aim of this paper is to achieve more accurate accuracy in SLAM algorithms compared to traditional methods through semantic approaches.
Design/methodology/approach
In this paper, the semantic segmentation of dynamic objects is realized based on U-Net semantic segmentation network, followed by motion consistency detection through motion detection method to determine whether the segmented objects are moving in the current scene or not, and combined with the motion compensation method to eliminate dynamic points and compensate for the current local image, so as to make the system robust.
Findings
Experiments comparing the effect of detecting dynamic points and removing outliers are conducted on a dynamic data set of Technische Universität München, and the results show that the absolute trajectory accuracy of this paper's method is significantly improved compared with ORB-SLAM3 and DS-SLAM.
Originality/value
In this paper, in the semantic segmentation network part, the segmentation mask is combined with the method of dynamic point detection, elimination and compensation, which reduces the influence of dynamic objects, thus effectively improving the accuracy of localization in dynamic environments.
Details
Keywords
Abdesselam Bougdira, Abdelaziz Ahaitouf and Ismail Akharraz
The purpose of this paper is to describe a proposed framework for traceability purpose. Hence, the framework provides a formal and structured way of viewing a traceability…
Abstract
Purpose
The purpose of this paper is to describe a proposed framework for traceability purpose. Hence, the framework provides a formal and structured way of viewing a traceability solution. This structure lays the required bases for a traceability system before starting development and deployment.
Design/methodology/approach
The paper examines several traceability publications, including systems and literature review. The study covers the traceability implementation phase. Therefore, this research approaches the traceability issue from three perspectives (description, engineering and executive one). The separation between aspects is essential when describing and comparing traceability systems. This distinction is also helpful when recommending solution improvements.
Findings
The framework identifies six traceability bases: aims, functions, specifications, data classification, processes and procedures. These can establish a basis for a general purpose tool that can enable users to develop an efficient traceability solution. Thus, the first ontology expresses the framework domain and ensures optimal use of it. The second one represents the bases that can serve as a knowledge base to manage the product data.
Research limitations/implications
The suggested framework tackles the implementation of traceability. Therefore, the design emphasizes the importance of technological concerns. Some studied cases could require more research angles (i.e. economic and legislative). Thus, framework enrichment is essential for further improvements.
Practical implications
The framework helps users to develop a general, interoperable and scalable traceability solution. These are important to promote the generalization of traceability systems.
Originality/value
The framework fulfills a requirement for establishing general traceability foundations. Therefore, the guide independently operates of the product or the industry specificity. Moreover, the bases aim to bridge the gap between solution engineering and traceability requirements.
Details