Search results
1 – 2 of 2Jun Zhu, Wei Luo, Wentao Xv, Shuigen Xv, XinYang Zhang and Jiefang Zhao
This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.
Abstract
Purpose
This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.
Design/methodology/approach
UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied.
Findings
All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance.
Social implications
Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications.
Originality/value
Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.
Details
Keywords
Abstract
Purpose
This paper aims to focus on an assessment of the electrochemical corrosion performance of bulk NC copper in a variety of corrosion environments.
Design/methodology/approach
The electrochemical corrosion behavior of bulk nanocrystalline (NC) copper prepared by inert gas condensation and in situ warm compress technique was studied by using potentiodynamic polarization and electrochemical impedance spectroscopy tests in de-aerated 0.1 M NaOH solution.
Findings
NC copper exhibited a typical active-passive-transpassive behavior with the formation of duplex passive films, which was qualitatively similar to coarse-grain (CG) copper. Although a compact passive film formed on NC copper surface, the corrosion resistance of NC copper was lower in comparison with CG copper. The increase in corrosion rate for NC copper was mainly attributed to the high activity of surface atoms and intergranular atoms. These atoms led to an enhancement of passive ability and an increase of dissolution rate of passive film in oxygen-deficiency solution. For NC copper, the corrosion resistance decreased as grain size increased in NC range.
Originality/value
The difference in corrosion resistance between bulk NC copper and its CG counterpart is dependent upon the corrosion solution. In a previous work, the potentiodynamic polarization tests revealed that NC copper bulks (grain size 48, 68, 92 nm) had identical corrosion resistance to CG copper bulk in naturally aerated 0.1 M NaOH solution. The results might be related to the dissolved oxygen in the medium.
Details