Search results

1 – 10 of 21
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 11 January 2018

Mohamed I.A. Othman, S.M. Abo-Dahab and Haneen A. Alosaimi

The purpose of this paper is to study a model of the equations of a two-dimensional problem in a half space, whose surface in a free micropolar thermoelastic medium possesses…

87

Abstract

Purpose

The purpose of this paper is to study a model of the equations of a two-dimensional problem in a half space, whose surface in a free micropolar thermoelastic medium possesses cubic symmetry as a result of inclined load. The problem is formulated in the context of Green-Naghdi theory of type II (G-N II) (without energy dissipation) and of type III (G-N III) (with energy dissipation) under the effect of magnetic field.

Design/methodology/approach

The normal mode analysis is used to obtain the exact expressions of the physical quantities.

Findings

The numerical results are given and presented graphically when the inclined load and magnetic field are applied. Comparisons are made with the results predicted by G-N theory of both types II and III in the presence and absence of the magnetic field and for different values of the angle of inclination.

Originality/value

In the present work, the authors study the influence of inclined load and magnetic field in a micropolar thermoelastic medium in the context of the G-N theory of both types II and III. Numerical results for the field quantities are obtained and represented graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 9 November 2015

Mohamed I. Othman, W. M. Hasona and Nehal T. Mansour

The purpose of this paper is to introduce the Lord-Shulman (L-S), Green-Naghdi of type III (G-N III) and three phase lag (3PHL) theories to study the effect of a magnetic field on…

104

Abstract

Purpose

The purpose of this paper is to introduce the Lord-Shulman (L-S), Green-Naghdi of type III (G-N III) and three phase lag (3PHL) theories to study the effect of a magnetic field on generalized thermoelastic medium with two temperature.

Design/methodology/approach

The problem has been solved numerically by using the normal mode analysis.

Findings

The problem is used to obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive temperature. The numerical results are given and presented graphically thermal force is applied. Comparisons are made with the results predicted by 3PHL, G-N III and L-S in the presence and absence of magnetic field as well as two temperature.

Originality/value

Generalized thermoelastic medium.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 7 October 2014

Mohamed I.A. Othman, W.M. Hasona and Elsayed M. Abd-Elaziz

The purpose of this paper is to introduce the coupled theory, Lord-Shulman theory with one relaxation time and Green-Lindsay theory with two relaxation times to study the…

92

Abstract

Purpose

The purpose of this paper is to introduce the coupled theory, Lord-Shulman theory with one relaxation time and Green-Lindsay theory with two relaxation times to study the influence of rotation on generalized micropolar thermoelasticity subject to thermal loading due to laser pulse. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 8 ps.

Design/methodology/approach

The problem has been solved numerically by using the normal mode analysis.

Findings

The thermal shock problem is studied to obtain the exact expressions for the displacement components, force stresses, temperature, couple stresses and micro-rotation. The distributions of the considered variables are illustrated graphically. Comparisons are made with the results predicted by three theories in the presence and absence of laser pulse and for different values of time.

Originality/value

Generalized micropolar thermoelastic solid.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 30 June 2021

A.Z. Zaher, Khalid K. Ali and Kh. S. Mekheimer

The study of the electro-osmotic forces (EOF) in the flow of the boundary layer has been a topic of interest in biomedical engineering and other engineering fields. The purpose of…

223

Abstract

Purpose

The study of the electro-osmotic forces (EOF) in the flow of the boundary layer has been a topic of interest in biomedical engineering and other engineering fields. The purpose of this paper is to develop an innovative mathematical model for electro-osmotic boundary layer flow. This type of fluid flow requires sophisticated mathematical models and numerical simulations.

Design/methodology/approach

The effect of EOF on the boundary layer Williamson fluid model containing a gyrotactic microorganism through a non-Darcian flow (Forchheimer model) is investigated. The problem is formulated mathematically by a system of non-linear partial differential equations (PDEs). By using suitable transformations, the PDEs system is transformed into a system of non-linear ordinary differential equations subjected to the appropriate boundary conditions. Those equations are solved numerically using the finite difference method.

Findings

The boundary layer velocity is lower in the case of non-Newtonian fluid when it is compared with that for a Newtonian fluid. The electro-osmotic parameter makes an increase in the velocity of the boundary layer. The boundary layer velocity is lower in the case of non-Darcian fluid when it is compared with Darcian fluid and as the Forchheimer parameter increases the behavior of the velocity becomes more closely. Entropy generation decays speedily far away from the wall and an opposite effect occurs on the Bejan number behavior.

Originality/value

The present outcomes are enriched to give valuable information for the research scientists in the field of biomedical engineering and other engineering fields. Also, the proposed outcomes are hopefully beneficial for the experimental investigation of the electroosmotic forces on flows with non-Newtonian models and containing a gyrotactic microorganism.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 14 October 2021

Naveed Imran and Maryiam Javed

Particular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal…

72

Abstract

Purpose

Particular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal distribution, momentum profile and concentration profile.

Design/methodology/approach

In the field of engineering, biologically inspired propulsion systems are getting the utmost importance. Keeping in view their developmental progress, the present study was made. The theoretical analysis explores the effect of heat and mass transfer on non-Newtonian Sisko fluid with slip effects and transverse magnetic field in symmetric compliant channel. Using low Reynolds number, so that the authors neglect inertial forces and for keeping the pressure constant during the flow, channel height is used largely as compared to the ratio of wavelength. The governing equations of fluid flow problem are solved using the perturbation analysis.

Findings

Results are considered for thickening, thinning and viscous nature of fluid models. It is found that the velocity distribution profile is boosted for increasing values of the Sisko fluid parameter and porous effect, while thermal profile is reducing for Brinkman number (viscous dissipation effects) for all cases. Moreover, shear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.

Originality/value

Hear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 6 September 2021

Sunil Kumar, Aarti Kadian and Kapil Kumar Kalkal

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface…

152

Abstract

Purpose

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface is subjected to an inclined mechanical load. The present study is carried out under the influence of gravity.

Design/methodology/approach

The normal mode technique is used to obtain the exact expressions of the physical fields.

Findings

For inclined mechanical load, the impact of micropolarity, nonlocal parameter, gravity and inclination angle have been highlighted on the considered physical fields.

Originality/value

The numerical results are computed for various physical quantities such as displacement, stresses and temperature for a magnesium crystal-like material and are illustrated graphically. The study is valuable for the analysis of thermoelastic problems involving gravitational field, nonlocal parameter, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 21 December 2017

Sunita Deswal, Baljit Singh Punia and Kapil Kumar Kalkal

The dual-phase-lag (DPL) model is applied to study the effect of the gravity field and micropolarity on the wave propagation in a two-temperature generalized thermoelastic problem…

247

Abstract

Purpose

The dual-phase-lag (DPL) model is applied to study the effect of the gravity field and micropolarity on the wave propagation in a two-temperature generalized thermoelastic problem for a medium. The paper aims to discuss this issue.

Design/methodology/approach

The exact expressions of the considered variables are obtained by using normal mode analysis.

Findings

Numerical results for the field quantities are given in the physical domain and illustrated graphically to show the effect of angle of inclination. Comparisons of the physical quantities are also shown in figure to study the effect of gravity and two-temperature parameter.

Originality/value

This paper is concerned with the analysis of transient wave phenomena in a micropolar thermoelastic half-space subjected to inclined load. The governing equations are formulated in the context of two-temperature generalized thermoelasticity theory with DPLs. A medium is assumed to be initially quiescent and under the effect of gravity. An analytical solution of the problem is obtained by employing normal mode analysis. Numerical estimates of displacement, stresses and temperatures are computed for magnesium crystal-like material and are illustrated graphically. Comparisons of the physical quantities are shown in figures to study the effects of gravity, two-temperature parameter and angle of inclination. Some particular cases of interest have also been inferred from the present problem.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 2 October 2024

Santosh Chaudhary and Jyoti Deshwal

This study is to examine the impact of viscous dissipation, thermal radiation and Ohmic heating on the magnetohydrodynamic (MHD) flow with thermal and mass transport over a…

46

Abstract

Purpose

This study is to examine the impact of viscous dissipation, thermal radiation and Ohmic heating on the magnetohydrodynamic (MHD) flow with thermal and mass transport over a horizontally stretching surface. Cattaneo–Christov heat flux model on a non-Newtonian viscous fluid along with two viscosity models and convective boundary condition has been employed. Tri-hybrid nanofluid has been used to increase thermal performance.

Design/methodology/approach

Governing mathematical model has been transposed into a dimensionless system of ordinary differential equations (ODEs) by applying suitable similarity transformation. Numerical solution has been found by applying the bvp4c shooting method in MATLAB software.

Findings

Velocity and thermal profiles of Model-I dominate the profiles of Model-II whereas opposite behavior is noticed for concentration profiles. It is concluded that there is an increase in temperature due to thermal radiation, viscous dissipation and convective boundary condition.

Originality/value

The novelty of presented work is to examine the impact of Ohmic heating, viscous dissipation, thermal radiation, chemical reaction and two models of viscosity on Cattaneo–Christov heat flux model of tri-hybrid non-Newtonian nanofluid with convective boundary constraint. The accuracy and effectiveness of presented model have been compared with already published research.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

111

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 7 November 2017

Rajneesh Kumar, Priyanka Kaushal and Rajni Sharma

The purpose of this paper is to investigate a two dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating.

71

Abstract

Purpose

The purpose of this paper is to investigate a two dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating.

Design/methodology/approach

Three phase lag theory of thermoelasticity has been used to formulate the problem. A numerical inversion technique is applied to obtain the result in the physical domain. The numerical values of the resulting quantities are presented graphically to show the effect of porosity and dual phase lag model. Some particular cases are also presented.

Findings

The Laplace and Hankel transforms are employed followed by the eigen value approach to obtain the components of displacements, microrotation, volume fraction field, temperature distribution and stresses in the transformed domain.

Originality/value

This paper fulfils the need to study the two-dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 21
Per page
102050