Search results

1 – 10 of 25
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 16 August 2023

Anish Khobragade, Shashikant Ghumbre and Vinod Pachghare

MITRE and the National Security Agency cooperatively developed and maintained a D3FEND knowledge graph (KG). It provides concepts as an entity from the cybersecurity…

91

Abstract

Purpose

MITRE and the National Security Agency cooperatively developed and maintained a D3FEND knowledge graph (KG). It provides concepts as an entity from the cybersecurity countermeasure domain, such as dynamic, emulated and file analysis. Those entities are linked by applying relationships such as analyze, may_contains and encrypt. A fundamental challenge for collaborative designers is to encode knowledge and efficiently interrelate the cyber-domain facts generated daily. However, the designers manually update the graph contents with new or missing facts to enrich the knowledge. This paper aims to propose an automated approach to predict the missing facts using the link prediction task, leveraging embedding as representation learning.

Design/methodology/approach

D3FEND is available in the resource description framework (RDF) format. In the preprocessing step, the facts in RDF format converted to subject–predicate–object triplet format contain 5,967 entities and 98 relationship types. Progressive distance-based, bilinear and convolutional embedding models are applied to learn the embeddings of entities and relations. This study presents a link prediction task to infer missing facts using learned embeddings.

Findings

Experimental results show that the translational model performs well on high-rank results, whereas the bilinear model is superior in capturing the latent semantics of complex relationship types. However, the convolutional model outperforms 44% of the true facts and achieves a 3% improvement in results compared to other models.

Research limitations/implications

Despite the success of embedding models to enrich D3FEND using link prediction under the supervised learning setup, it has some limitations, such as not capturing diversity and hierarchies of relations. The average node degree of D3FEND KG is 16.85, with 12% of entities having a node degree less than 2, especially there are many entities or relations with few or no observed links. This results in sparsity and data imbalance, which affect the model performance even after increasing the embedding vector size. Moreover, KG embedding models consider existing entities and relations and may not incorporate external or contextual information such as textual descriptions, temporal dynamics or domain knowledge, which can enhance the link prediction performance.

Practical implications

Link prediction in the D3FEND KG can benefit cybersecurity countermeasure strategies in several ways, such as it can help to identify gaps or weaknesses in the existing defensive methods and suggest possible ways to improve or augment them; it can help to compare and contrast different defensive methods and understand their trade-offs and synergies; it can help to discover novel or emerging defensive methods by inferring new relations from existing data or external sources; and it can help to generate recommendations or guidance for selecting or deploying appropriate defensive methods based on the characteristics and objectives of the system or network.

Originality/value

The representation learning approach helps to reduce incompleteness using a link prediction that infers possible missing facts by using the existing entities and relations of D3FEND.

Details

International Journal of Web Information Systems, vol. 19 no. 3/4
Type: Research Article
ISSN: 1744-0084

Keywords

Access Restricted. View access options
Article
Publication date: 29 October 2024

Huiling Yu, Sijia Dai, Shen Shi and Yizhuo Zhang

The abnormal behaviors of staff at petroleum stations pose significant safety hazards. Addressing the challenges of high parameter counts, lengthy training periods and low…

9

Abstract

Purpose

The abnormal behaviors of staff at petroleum stations pose significant safety hazards. Addressing the challenges of high parameter counts, lengthy training periods and low recognition rates in existing 3D ResNet behavior recognition models, this paper proposes GTB-ResNet, a network designed to detect abnormal behaviors in petroleum station staff.

Design/methodology/approach

Firstly, to mitigate the issues of excessive parameters and computational complexity in 3D ResNet, a lightweight residual convolution module called the Ghost residual module (GhostNet) is introduced in the feature extraction network. Ghost convolution replaces standard convolution, reducing model parameters while preserving multi-scale feature extraction capabilities. Secondly, to enhance the model's focus on salient features amidst wide surveillance ranges and small target objects, the triplet attention mechanism module is integrated to facilitate spatial and channel information interaction. Lastly, to address the challenge of short time-series features leading to misjudgments in similar actions, a bidirectional gated recurrent network is added to the feature extraction backbone network. This ensures the extraction of key long time-series features, thereby improving feature extraction accuracy.

Findings

The experimental setup encompasses four behavior types: illegal phone answering, smoking, falling (abnormal) and touching the face (normal), comprising a total of 892 videos. Experimental results showcase GTB-ResNet achieving a recognition accuracy of 96.7% with a model parameter count of 4.46 M and a computational complexity of 3.898 G. This represents a 4.4% improvement over 3D ResNet, with reductions of 90.4% in parameters and 61.5% in computational complexity.

Originality/value

Specifically designed for edge devices in oil stations, the 3D ResNet network is tailored for real-time action prediction. To address the challenges posed by the large number of parameters in 3D ResNet networks and the difficulties in deployment on edge devices, a lightweight residual module based on ghost convolution is developed. Additionally, to tackle the issue of low detection accuracy of behaviors amidst the noisy environment of petroleum stations, a triple attention mechanism is introduced during feature extraction to enhance focus on salient features. Moreover, to overcome the potential for misjudgments arising from the similarity of actions, a Bi-GRU model is introduced to enhance the extraction of key long-term features.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Access Restricted. View access options
Article
Publication date: 13 May 2020

Zhijie Wen, Qikun Zhao and Lining Tong

The purpose of this paper is to present a novel method for minor fabric defects detection.

347

Abstract

Purpose

The purpose of this paper is to present a novel method for minor fabric defects detection.

Design/methodology/approach

This paper proposes a PETM-CNN algorithm. PETM-CNN is designed based on self-similar estimation algorithm and Convolutional Neural Network. The PE (Patches Extractor) algorithm extracts patches that are possible to be defective patches to preprocess the fabric image. Then a TM-CNN (Triplet Metric CNN) method is designed to predict labels of the patches and the final label of the image. The TM-CNN can perform better than normal CNN.

Findings

This algorithm is superior to other algorithms on the data set of fabric images with minor defects. The proposed method achieves accurate classification of fabric images whether it has minor defects or not. The experimental results show that the approach is effective.

Originality/value

Traditional fabric defects detection is not effective as minor defects detection, so this paper develops a method of minor fabric images classification based on self-similar estimation and CNN. This paper offers the first investigation of minor fabric defects.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 7 November 2022

T. Sree Lakshmi, M. Govindarajan and Asadi Srinivasulu

A proper understanding of malware characteristics is necessary to protect massive data generated because of the advances in Internet of Things (IoT), big data and the cloud…

90

Abstract

Purpose

A proper understanding of malware characteristics is necessary to protect massive data generated because of the advances in Internet of Things (IoT), big data and the cloud. Because of the encryption techniques used by the attackers, network security experts struggle to develop an efficient malware detection technique. Though few machine learning-based techniques are used by researchers for malware detection, large amounts of data must be processed and detection accuracy needs to be improved for efficient malware detection. Deep learning-based methods have gained significant momentum in recent years for the accurate detection of malware. The purpose of this paper is to create an efficient malware detection system for the IoT using Siamese deep neural networks.

Design/methodology/approach

In this work, a novel Siamese deep neural network system with an embedding vector is proposed. Siamese systems have generated significant interest because of their capacity to pick up a significant portion of the input. The proposed method is efficient in malware detection in the IoT because it learns from a few records to improve forecasts. The goal is to determine the evolution of malware similarity in emerging domains of technology.

Findings

The cloud platform is used to perform experiments on the Malimg data set. ResNet50 was pretrained as a component of the subsystem that established embedding. Each system reviews a set of input documents to determine whether they belong to the same family. The results of the experiments show that the proposed method outperforms existing techniques in terms of accuracy and efficiency.

Originality/value

The proposed work generates an embedding for each input. Each system examined a collection of data files to determine whether they belonged to the same family. Cosine proximity is also used to estimate the vector similarity in a high-dimensional area.

Details

International Journal of Pervasive Computing and Communications, vol. 21 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Access Restricted. View access options
Article
Publication date: 27 August 2024

Jingyi Zhao and Mingjun Xin

The purpose of this paper is to present a method that addresses the data sparsity problem in points of interest (POI) recommendation by introducing spatiotemporal context features…

18

Abstract

Purpose

The purpose of this paper is to present a method that addresses the data sparsity problem in points of interest (POI) recommendation by introducing spatiotemporal context features based on location-based social network (LBSN) data. The objective is to improve the accuracy and effectiveness of POI recommendations by considering both spatial and temporal aspects.

Design/methodology/approach

To achieve this, the paper introduces a model that integrates the spatiotemporal context of POI records and spatiotemporal transition learning. The model uses graph convolutional embedding to embed spatiotemporal context information into feature vectors. Additionally, a recurrent neural network is used to represent the transitions of spatiotemporal context, effectively capturing the user’s spatiotemporal context and its changing trends. The proposed method combines long-term user preferences modeling with spatiotemporal context modeling to achieve POI recommendations based on a joint representation and transition of spatiotemporal context.

Findings

Experimental results demonstrate that the proposed method outperforms existing methods. By incorporating spatiotemporal context features, the approach addresses the issue of incomplete modeling of spatiotemporal context features in POI recommendations. This leads to improved recommendation accuracy and alleviation of the data sparsity problem.

Practical implications

The research has practical implications for enhancing the recommendation systems used in various location-based applications. By incorporating spatiotemporal context, the proposed method can provide more relevant and personalized recommendations, improving the user experience and satisfaction.

Originality/value

The paper’s contribution lies in the incorporation of spatiotemporal context features into POI records, considering the joint representation and transition of spatiotemporal context. This novel approach fills the gap left by existing methods that typically separate spatial and temporal modeling. The research provides valuable insights into improving the effectiveness of POI recommendation systems by leveraging spatiotemporal information.

Details

International Journal of Web Information Systems, vol. 20 no. 5
Type: Research Article
ISSN: 1744-0084

Keywords

Available. Open Access. Open Access
Article
Publication date: 14 October 2024

Toby Wilkinson, Massimiliano Casata and Daniel Barba

This study aims to introduce an image-based method to determine the processing window for a given alloy system using laser powder bed fusion equipment based on achieving the…

337

Abstract

Purpose

This study aims to introduce an image-based method to determine the processing window for a given alloy system using laser powder bed fusion equipment based on achieving the desired melting mode across multiple materials for powder-free specimens. The method uses a convolutional neural network trained to classify different track morphologies across different alloy systems to select appropriate printing settings. This method is intended for the development of new alloy systems, where the powder feedstock may be unavailable, or prohibitively expensive to manufacture.

Design/methodology/approach

A convolutional neural network is designed from scratch to identify the 4 key melting modes that are observed in laser powder bed fusion additive manufacturing across different alloy systems. To increase the prediction accuracy and generalisation accuracy across different materials, the network is trained using a novel hybrid data set that combines fully unsupervised learning with semi-supervised learning.

Findings

This study demonstrates that our convolutional network with a novel hybrid training approach can be generalised across different materials, and k-fold validation shows that the model retains good accuracy with changing training conditions. The model can predict the processing maps for the different alloys with an accuracy of up to 96% in some cases. It is also shown that powder-free single-track experiments are a useful indicator for predicting the final print quality of a component.

Originality/value

The “invariant information clustering” (IIC) approach is applied to process optimisation for additive manufacturing, and a novel hybrid data set construction approach that accounts for uncertainty in the ground truth data, enables the trained convolutional model to perform across a range of different materials and most importantly, generalise to materials outside of the training data set. Compared to the traditional cross-sectioning approach, this method considers the whole length of the single track when determining the melting mode.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 22 November 2024

Navneet Kaur, Shreelekha Pandey and Nidhi Kalra

The attraction of online shopping has raised the demand for customized image searches, mainly in the fashion industry. Daily updates in this industry increase the size of the…

21

Abstract

Purpose

The attraction of online shopping has raised the demand for customized image searches, mainly in the fashion industry. Daily updates in this industry increase the size of the clothing database at a rapid rate. Hence, it is crucial to design an efficient and fast image retrieval system owing to the short-listing of images depending upon various parameters such as color, pattern, material used, style, etc.

Design/methodology/approach

This manuscript introduces an improved algorithm for the retrieval of images. The inherited quality of images is first enhanced through intensity modification and morphological operations achieved with the help of a light adjustment algorithm, followed by the speeded up robust feature (SURF) extraction and convolutional neural networks (CNN).

Findings

The results are validated under three performance parameters (precision, recall and accuracy) on a DeepFashion dataset. The proposed approach helps to extract the most relevant images from a larger dataset based on scores conferred by multiple cloth features to meet the demands of real-world applications. The efficiency of the proposed work is deduced from its effectiveness in comparison to existing works, as measured by performance parameters including precision, recall and F1 score. Further, it is also evaluated against other recent techniques on the basis of performance metrics.

Originality/value

The presented work is particularly advantageous in the fashion industry for creating precise categorization and retrieving visually appealing photographs from a diverse library based on different designs, patterns and fashion trends. The proposed approach is quite better than the other existing ML/DL-based approaches for image retrieval and classification. This further reflects a significant improvement in customized image retrieval in the field of the fashion industry.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 17 February 2025

Yu Liu and Ziming Zeng

Previous research mainly uses graph neural networks on syntactic dependency graphs, often neglecting emotional cues in sarcasm detection and failing to integrate image features…

27

Abstract

Purpose

Previous research mainly uses graph neural networks on syntactic dependency graphs, often neglecting emotional cues in sarcasm detection and failing to integrate image features for multimodal information effectively. To address these limitations, this study proposes a novel multimodal sarcasm detection model based on the directed graph isomorphism network with sentiment enhancement and multimodal fusion (DGIN-SE-MF).

Design/methodology/approach

The approach extracts image and text features through vision transformer and BERT, respectively. To deeply integrate the extracted features, the author develops a text-guided multi-head attention fusion mechanism module. Subsequently, a directed graph is constructed through SE and the multimodal factorized bilinear pooling method to integrate image features into the graph. The DGIN then fuses the image and text features, using a weighted attention mechanism to generate the final representation.

Findings

The model is validated on three datasets: English, Chinese and an Indonesian–English dataset. The results demonstrate that the proposed model consistently outperforms other baseline models, particularly on the Chinese and English sarcasm datasets, achieving F1 scores of 88.75 % and 83.10 %, respectively.

Originality/value

The proposed model addresses the inadequacies of previous methods by effectively integrating emotional cues and image features into sarcasm detection. To the best of the authors’ knowledge, this is the first work to leverage a DGIN-SE-MF for this task, leading to significant improvements in detection performance across different languages.

Details

The Electronic Library, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-0473

Keywords

Access Restricted. View access options
Article
Publication date: 7 November 2024

Liqiong Chen, Lei Yunjie and Sun Huaiying

This study aims to solve the problems of large training sample size, low data sample quality, low efficiency of the currently used classical model, high computational complexity…

16

Abstract

Purpose

This study aims to solve the problems of large training sample size, low data sample quality, low efficiency of the currently used classical model, high computational complexity of the existing concern mechanism, and high graphics processing unit (GPU) occupancy in the current visualization software defect prediction, proposing a method for software defect prediction termed recurrent criss-cross attention for weighted activation functions of recurrent SE-ResNet (RCCA-WRSR). First, following code visualization, the activation functions of the SE-ResNet model are replaced with a weighted combination of Relu and Elu to enhance model convergence. Additionally, an SE module is added before it to filter feature information, eliminating low-weight features to generate an improved residual network model, WRSR. To focus more on contextual information and establish connections between a pixel and those not in the same cross-path, the visualized red as integer, green as integer, blue as integer images are inputted into a model incorporating a fused RCCA module for defect prediction.

Design/methodology/approach

Software defect prediction based on code visualization is a new software defect prediction technology, which mainly realizes the defect prediction of code by visualizing code as image, and then applying attention mechanism to extract the features of image. However, the challenges of current visualization software defect prediction mainly include the large training sample size and low sample quality of the data, and the classical models used today are not efficient, and the existing attention mechanisms have high computational complexity and high GPU occupancy.

Findings

Experimental evaluation using ten open-source Java data sets from PROMISE and five existing methods demonstrates that the proposed approach achieves an F-measure value of 0.637 in predicting 16 cross-version projects, representing a 6.1% improvement.

Originality/value

RCCA-WRSR is a new visual software defect prediction based on recurrent criss-cross attention and improved residual network. This method effectively enhances the performance of software defect prediction.

Details

International Journal of Web Information Systems, vol. 20 no. 6
Type: Research Article
ISSN: 1744-0084

Keywords

Access Restricted. View access options
Article
Publication date: 22 July 2021

Zirui Guo, Huimin Lu, Qinghua Yu, Ruibin Guo, Junhao Xiao and Hongshan Yu

This paper aims to design a novel feature descriptor to improve the performance of feature matching in challenge scenes, such as low texture and wide-baseline scenes. Common…

116

Abstract

Purpose

This paper aims to design a novel feature descriptor to improve the performance of feature matching in challenge scenes, such as low texture and wide-baseline scenes. Common descriptors are not suitable for low texture scenes and other challenging scenes mainly owing to encoding only one kind of features. The proposed feature descriptor considers multiple features and their locations, which is more expressive.

Design/methodology/approach

A graph neural network–based descriptors enhancement algorithm for feature matching is proposed. In this paper, point and line features are the primary concerns. In the graph, commonly used descriptors for points and lines constitute the nodes and the edges are determined by the geometric relationship between points and lines. After the graph convolution designed for incomplete join graph, enhanced descriptors are obtained.

Findings

Experiments are carried out in indoor, outdoor and low texture scenes. The experiments investigate the real-time performance, rotation invariance, scale invariance, viewpoint invariance and noise sensitivity of the descriptors in three types of scenes. The results show that the enhanced descriptors are robust to scene changes and can be used in wide-baseline matching.

Originality/value

A graph structure is designed to represent multiple features in an image. In the process of building graph structure, the geometric relation between multiple features is used to establish the edges. Furthermore, a novel hybrid descriptor for points and lines is obtained using graph convolutional neural network. This enhanced descriptor has the advantages of both point features and line features in feature matching.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 25
Per page
102050