Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 31 July 2021

Shi Zhao, Tien-Fu Lu, Larissa Statsenko, Benjamin Koch and Chris Garcia

In the mining industry, a run-of-mine (ROM) stockpile is a temporary storage unit, but it is also widely accepted as an effective method to reduce the short-term variations of ore…

235

Abstract

Purpose

In the mining industry, a run-of-mine (ROM) stockpile is a temporary storage unit, but it is also widely accepted as an effective method to reduce the short-term variations of ore grade. However, tracing ore grade at ROM stockpiles accurately using most current fleet management systems is challenging, due to insufficient information available in real time. This study aims to build a three-dimensional (3D) model for ROM stockpiles continuously based on fine-grained grade information through integrating data from a number of ore grade tracking sources.

Design/methodology/approach

Following a literature review, a framework for a new stockpile management system is proposed. In this system, near real-time high-resolution 3D ROM stockpile models are created based on dump/load locations measured from global positioning system sensors. Each stockpile model contains a group of layers which are separated by different qualities.

Findings

Acquiring the geometric shapes of all the layers in a stockpile and cuts made by front wheel loaders provides a better understanding about the quality and quality distribution within a stockpile when it is stacked/reclaimed. Such a ROM stockpile model can provide information on predicating ore blend quality with high accuracy and high efficiency. Furthermore, a 3D stockyard model created based on such ROM stockpile models can help organisations optimise material flow and reduce the cost.

Research limitations/implications

The modelling algorithm is evaluated using a laboratory scaled stockpile at this stage. The authors expect to scan a real stockpile and create a reference model from it. Meanwhile, the geometric model cannot represent slump or collapse during reclaiming faithfully. Therefore, the model is expected to be reconcile monthly using laser scanning data.

Practical implications

The proposed model is currently translated to the operations at OZ Minerals. The use of such model will reduce the handling costs and improve the efficiency of existing grade management systems in the mining industry.

Originality/value

This study provides a solution to build a near real-time high-resolution multi-layered 3D stockpile model through using currently available information and resources. Such novel and low-cost stockpile model will improve the production rates with good output product quality control.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 1997

Grier C.I. Lin and Tien‐Fu Lu

Presents an on‐line calibration methodology for robot relative positioning inaccuracy. This methodology eliminates the need for time‐consuming off‐line calibrations relying on…

397

Abstract

Presents an on‐line calibration methodology for robot relative positioning inaccuracy. This methodology eliminates the need for time‐consuming off‐line calibrations relying on accurate models and complicated procedures. To realize this methodology, a vision system, a 3D force/torque sensor, and control strategies involving Neural Networks (NNs) were incorporated with an industrial robot.

Details

Industrial Robot: An International Journal, vol. 24 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2004

Tien‐Fu Lu, Daniel C. Handley, Yuen Kuan Yong and Craig Eales

Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly use…

1874

Abstract

Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly use piezoelectric actuators (PZT) together with compliant mechanisms to provide fine motions with position resolution in the nanometre or even sub‐nanometre range. Many multiple degree of freedom (DOF) micromotion stages have parallel structures due to better stiffness and accuracy than serial structures. This paper presents the development of a three‐DOF compliant micromotion stage with flexure hinges and parallel structure for applications requiring motions in micrometres. The derivation of a simple linear kinematic model of the compliant mechanism is presented and simulation results before and after calibration are compared with results from finite element (FE) modeling and experiments. The position control system, which uses an experimentally determined constant‐Jacobian, and its performance are also presented and discussed.

Details

Industrial Robot: An International Journal, vol. 31 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 10 August 2021

Zehba Raizah and Abdelraheem M. Aly

The purpose of this paper is to perform numerical simulations based on the incompressible smoothed particle hydrodynamics (ISPH) method for thermo-diffusion convection in a…

81

Abstract

Purpose

The purpose of this paper is to perform numerical simulations based on the incompressible smoothed particle hydrodynamics (ISPH) method for thermo-diffusion convection in a hexagonal-shaped cavity saturated by a porous medium and suspended by a nano-encapsulated phase change material (NEPCM). Here, the solid particles are inserted into a phase change material to enhance its thermal performance.

Design/methodology/approach

Superellipse rotated shapes with variable lengths are embedded inside a hexagonal-shaped cavity. These inner shapes are rotated around their center by a uniform circular velocity and their conditions are positioned at high temperature and concentration. The controlling equations in a non-dimensional form were analyzed by using the ISPH method. At first, the validation of the ISPH results is performed. Afterward, the implications of a fusion temperature, lengths/types of the superellipse shapes, nanoparticles parameter and time parameter on the phase change heat transfer, isotherms, isoconcentration and streamlines were addressed.

Findings

The achieved simulations indicated that the excess in the length of an inner superellipse shape augments the temperature, concentration and maximum of the streamlines in a hexagonal-shaped cavity. The largest values of mean Nusselt number are attained at the inner rhombus shape with convex (n = 1.5) and the largest values of mean Sherwood number are attained at the inner rectangle shape with rounded corners (n = 4).

Originality/value

The ISPH method is developed to emulate the influences of the uniform rotation of the novel geometry shapes on heat/mass transport inside a hexagonal-shaped cavity suspended by NEPCM and saturated by porous media.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4
Per page
102050