Yan Yin, Heng Zhou, Jiusheng Bao, Zengsong Li, Xingming Xiao and Shaodi Zhao
This paper aims to overcome the defect of single-source temperature measurement method and improve the measurement accuracy of FTR. The friction temperature rise (FTR) of brake…
Abstract
Purpose
This paper aims to overcome the defect of single-source temperature measurement method and improve the measurement accuracy of FTR. The friction temperature rise (FTR) of brake affects braking performance seriously. However, it was mainly detected by single-source indirect thermometry, which has obvious deviations.
Design/methodology/approach
A three-point temperature measurement system was built based on three kinds of single-resource thermometry. Temperature characteristics of these thermometry were analyzed to achieve a standard FTR curve. Two fusion-monitoring models for FTR based on multi-source information were established by artificial neural network (ANN) and support vector machine (SVM).
Findings
Finally, the two models were verified based on the experimental results. The results showed that the fusion-monitoring model of SVM was more accurate than that of ANN in monitoring of FTR.
Originality/value
Then the temperature characteristics of the three single-source thermometry were analyzed, and the fusion-monitoring models based on multi-source information were established by ANN and SVM. Finally, the accuracy of the two models was compared by the experimental results. The more suitable fusion-monitoring model for FTR monitoring was determined which would be of theoretical and practical significance for remedying the monitoring defect of FTR.
Details
Keywords
Ali Alperen Bakır, Resul Atik and Sezer Özerinç
This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used…
Abstract
Purpose
This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used technique for the manufacturing of thermoplastic parts. The mechanical performance of these parts under service conditions is difficult to predict due to the large number of process parameters involved. The review summarizes the current knowledge about the process-property relationships for FDM-based three-dimensional printing.
Design/methodology/approach
The review first discusses the effect of material selection, including pure thermoplastics and polymer-matrix composites. Second, process parameters such as nozzle temperature, raster orientation and infill ratio are discussed. Mechanisms that these parameters affect the specimen morphology are explained, and the effect of each parameter on the strength of printed parts are systematically presented.
Findings
Mechanical properties of FDM-produced parts strongly depend on process parameters and are usually lower than injection-molded counterparts. There is a need to understand the effect of each parameter and any synergistic effects involved better.
Practical implications
Through the optimization of process parameters, FDM has the potential to produce parts with strength values matching those produced by conventional methods. Further work in the field will make the FDM process more suitable for the manufacturing of load-bearing components.
Originality/value
This paper presents a critical assessment of the current knowledge about the mechanical properties of FDM-produced parts and suggests future research directions.
Details
Keywords
A. Laouadi, M. Lacroix and N. Galanis
Presents a physical model for determining the effective thermal conductivity of a two‐phase composite medium with fixed or moving interfaces. A rigorous numerical method for…
Abstract
Presents a physical model for determining the effective thermal conductivity of a two‐phase composite medium with fixed or moving interfaces. A rigorous numerical method for removing oscillations in the thermal field is proposed. The methodology is based on the volume averaging technique with the assumption that the phases may coexist at a temperature different from that of fusion. The analysis reveals that the effective conductivity of a two‐phase medium is dependent on the phase volume fractions, on their thermal conductivities and on a constitutive constant which determines the geometric structure of the medium and the nature of the interface (fixed or moving). The results for the one and two dimensional conduction‐dominated phase change problem show that the oscillations produced by previous fixed‐grid methods are eliminated.
Details
Keywords
Xiaoli Zhang and T. Hung Nguyen
The solidification of a superheated fluid‐porous medium contained in a rectangular cavity is studied numerically. The bottom and side walls of the cavity are insulated while the…
Abstract
The solidification of a superheated fluid‐porous medium contained in a rectangular cavity is studied numerically. The bottom and side walls of the cavity are insulated while the top wall is maintained at a constant temperature below the freezing point of the saturating fluid. The study is focused on the effects of superheat on the development of natural convection and heat transfer during the solidification process. For a fluid initially at a temperature above the freezing point, the results obtained by neglecting convection overpredicts the solidification time by about 12 percent for a Rayleigh number of 800. When convection is taken into account, it is found that the solidification process consists of three distinct regimes: the conduction regime, convection regime and the solidification of the remaining fluid that can be described by the Neumann solution for the solidification of a fluid at its freezing point. The numerical simulations are based on the Darcy‐Boussinesq equations, using the front tracking method in a transformed coordinate system. The entire solidification process is described in terms of the evolutions of the streamlines and isotherm patterns, the maximum and average temperatures of the fluid, the interface position, and the heat transfer rate. The parametric domain covered by these simulations is 0 ≤ Ra ≤ 800, 0 ≤ Stl ≤ 0.67, Sts = 0.3 and XL = 1 where Ra is the Rayleigh number, Stlthe liquid Stefan number, Sts the solid Stefan number, and XL the aspect ratio of the cavity.
Details
Keywords
Mayur Pratap Singh, Dinesh Kumar Shukla, Rajneesh Kumar and Kanwer Singh Arora
The key purpose of conducting this review is to identify the issues that affect the structural integrity of pipeline structures. Heat affected zone (HAZ) has been identified as…
Abstract
Purpose
The key purpose of conducting this review is to identify the issues that affect the structural integrity of pipeline structures. Heat affected zone (HAZ) has been identified as the weak zone in pipeline welds which is prone to have immature failures
Design/methodology/approach
In the present work, literature review is conducted on key issues related to the structural integrity of pipeline steel welds. Mechanical and microstructural transformations that take place during welding have been systematically reviewed in the present review paper.
Findings
Key findings of the present review underline the role of brittle microstructure phases, and hard secondary particles present in the matrix are responsible for intergranular and intragranular cracks.
Research limitations/implications
The research limitations of the present review are new material characterization techniques that are not available in developing countries.
Practical implications
The practical limitations are new test methodologies and associated cost.
Social implications
The fracture of pipelines significantly affects the surrounding ecology. The continuous spillage of oil pollutes the land and water of the surroundings.
Originality/value
The present review contains recent and past studies conducted on welded pipeline steel structures. The systematic analysis of studies conducted so far highlights various bottlenecks of the welding methods.
Details
Keywords
Abdelraheem M. Aly and Noura Alsedais
This paper aims to investigate the conformable fractal approaches of unsteady natural convection in a partial layer porous H-shaped cavity suspended by nano-encapsulated phase…
Abstract
Purpose
This paper aims to investigate the conformable fractal approaches of unsteady natural convection in a partial layer porous H-shaped cavity suspended by nano-encapsulated phase change material (NEPCM) by the incompressible smoothed particle hydrodynamics method.
Design/methodology/approach
The partial hot sources with variable height L_Hot are in the H-cavity’s sides and center. The performed numerical simulations are obtained at the variations of the following parameters: source of hot length L_Hot = (0.4–1.6), conformable fractal parameter α (0.97–1), fusion temperature θf (0.05–0.9), thermal radiation parameter Rd (0–7), Rayleigh number Ra (103–106), Darcy parameter Da (10−2 to 10−5) and Hartmann number Ha (0–80).
Findings
The main outcomes showed the implication of hot source length L_Hot, Rayleigh number and fusion temperature in controlling the contours of a heat capacity within H-shaped cavity. The presence of a porous layer in the right zone of H-shaped cavity prevents the nanofluid flow within this area at lower Darcy parameter. An increment in the thermal radiation parameter declines the heat transfer and changes the heat capacity contours within H-shaped cavity. The velocity field is strongly enhanced by an augmentation on Rayleigh number. Increasing the Hartmann number shrinks the velocity field within H-shaped cavity.
Originality/value
The novelty of this work is solving the conformable fractal approaches of unsteady natural convection in a partial layer porous H-shaped cavity suspended by NEPCM.
Details
Keywords
A numerical study is reported of natural convection melting of ice within a vertical cylinder. A stream function‐vorticity‐temperature formulation is employed in conjunction with…
Abstract
A numerical study is reported of natural convection melting of ice within a vertical cylinder. A stream function‐vorticity‐temperature formulation is employed in conjunction with body‐fitted coordinates for tracking the irregular shape of the timewise varying solid‐liquid interface. A parabolic density profile versus temperature is assumed for water. Numerical experiments are carried out for a temperature of the cylinder wall ranging from 4°C to 10°C. Results show that natural convection heat transfer involving density anomaly leads to complex flow patterns and strongly affects the time evolution of the phase front. The maximum Nusselt number at the heated cylinder wall is obtained for Tw = 4°C while the minimum is observed for Tw = 8°C.
Details
Keywords
Melting of pure metal in presence of turbulent natural convection with Rayleigh number ranging from 106 to 109 has been studied numerically. The governing equations are formulated…
Abstract
Melting of pure metal in presence of turbulent natural convection with Rayleigh number ranging from 106 to 109 has been studied numerically. The governing equations are formulated in terms of stream function—vorticity—temperature and the moving distorted solid/liquid interface is tracked using body‐fitted coordinates. The turbulent flow is taken into account using an algebraic eddy‐viscosity model with Prandtl's mixing length. Results indicate that turbulent natural convection plays a more significant role than laminar flow in the process of melting. Heat transfer and melting rates are significantly increased and a correlation for the average Nusselt number at the heated wall in the quasi‐steady melting regime is proposed.
Details
Keywords
Michele Chiumenti, Xin Lin, Miguel Cervera, Wei Lei, Yuxiang Zheng and Weidong Huang
This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at…
Abstract
Purpose
This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at State Key Laboratory of Solidification Processing laboratories, where a laser solid forming machine, also referred to as laser engineered net shaping, is used to fabricate metal parts directly from computer-aided design models. Ti-6Al-4V metal powder is injected into the molten pool created by a focused, high-energy laser beam and a layer of added material is sinterized according to the laser scanning pattern specified by the user.
Design/methodology/approach
The numerical model adopts an apropos finite element (FE) activation technology, which reproduces the same scanning pattern set for the numerical control system of the AM machine. This consists of a complex sequence of polylines, used to define the contour of the component, and hatches patterns to fill the inner section. The full sequence is given through the common layer interface format, a standard format for different manufacturing processes such as rapid prototyping, shape metal deposition or machining processes, among others. The result is a layer-by-layer metal deposition which can be used to build-up complex structures for components such as turbine blades, aircraft stiffeners, cooling systems or medical implants, among others.
Findings
Ad hoc FE framework for the numerical simulation of the AM process by metal deposition is introduced. Description of the calibration procedure adopted is presented.
Originality/value
The objectives of this paper are twofold: firstly, this work is intended to calibrate the software for the numerical simulation of the AM process, to achieve high accuracy. Secondly, the sensitivity of the numerical model to the process parameters and modeling data is analyzed.
Details
Keywords
The paper's aim is to suggest a new micro‐thermonuclear reactor for aerospace.
Abstract
Purpose
The paper's aim is to suggest a new micro‐thermonuclear reactor for aerospace.
Design/methodology/approach
Methods of the thermonuclear physics are used for the research.
Findings
The result is new micro‐thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi‐reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power‐making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator.
Practical implications
The author is researching the efficiency of these innovations for two types of the micro‐thermonuclear reactors: multi‐reflection reactor (inertial confinement fusion) and self‐magnetic reactor (magnetic confinement fusion).
Originality/value
The author offers several innovations. Results may be used for the design of thermonuclear aerospace engines, propulsion and electric generators.