Thus, in this work the goal is to design, simulate and optimise a holder of a brushless motor in lattice structure to get the best performance in terms of mechanical strength…
Abstract
Purpose
Thus, in this work the goal is to design, simulate and optimise a holder of a brushless motor in lattice structure to get the best performance in terms of mechanical strength, vibration absorption and lightness.
Design/methodology/approach
Nowadays, most manufacturers and designers' goal are to sell efficient products in mass to keep up or outrun competition. Medical, aeronautical, automobile and civil engineering sectors produce complex parts and products that encompasses multiple properties such as lightweight, energy absorbance, vibration reduction and stress resistant. Studies found that lattice structures are more and more useful in these fields since their characteristics satisfy complex behaviour.
Findings
The study's outcome suggests that the use of lattice structure reduces 60% of the actual motor holder mass while keeping the strength of the material, meeting initial specifications.
Research limitations/implications
The Ram capacity of the PC.
Practical implications
Light materials for aerospace engineering elongate the range of the unmanned aerial vehicle (UAV) to an extra range of flight.
Social implications
Situation awareness of the country border using surveillance drone and minimising the consumption of fuel.
Originality/value
The research allowed reducing 60% the actual holder mass.
Details
Keywords
Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin
This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…
Abstract
This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.