Jitendra Kumar and Sushant Negi
This study aims to deal with developing composite filaments and investigating the tribological behavior of additively manufactured syntactic foam composites. The primary objective…
Abstract
Purpose
This study aims to deal with developing composite filaments and investigating the tribological behavior of additively manufactured syntactic foam composites. The primary objective is to examine the suitability of the cenosphere (CS; 0–30 Wt.%) to develop a high-quality lightweight composite structure with improved abrasion strength.
Design/methodology/approach
CS/polyethylene terephthalate glycol (PETG) composite feedstock filaments under optimized extrusion conditions were developed, and a fused filament fabrication process was used to prepare CS-filled PETG composite structures under optimal printing conditions. Significant parameters such as CS (0–30 Wt.%), sliding speed (200–800 rpm) and typical load (10–40 N) were used to minimize the dry sliding wear rate and coefficient of friction for developed composites.
Findings
The friction coefficient and specific wear rate (SWR) are most affected by the CS weight percentage and applied load, respectively. However, nozzle temperature has the least effect on the friction coefficient and SWR. A mathematical model predicts the composite material’s SWR and coefficient of friction with 87.5% and 95.2% accuracy, respectively.
Practical implications
Because of their tailorable physical and mechanical properties, CS/PETG lightweight composite structures can be used in low-density and damage-tolerance applications.
Social implications
CS, an industrial waste material, is used to develop lightweight syntactic foam composites for advanced engineering applications.
Originality/value
CS-reinforced PETG composite filaments were developed to fabricate ultra-light composite structures through a 3D printing routine.
Details
Keywords
Ch Kapil Ror, Vishal Mishra, Sushant Negi and Vinyas M.
This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced…
Abstract
Purpose
This study aims to evaluate the potential of using the in-nozzle impregnation approach to reuse recycled PET (RPET) to develop continuous banana fiber (CBF) reinforced bio-composites. The mechanical properties and fracture morphology behavior are evaluated to establish the relationships between layer spacing–microstructural characteristics–mechanical properties of CBF/RPET composite.
Design/methodology/approach
This study uses RPET filament developed from post-consumer PET bottles and CBF extracted from agricultural waste banana sap. RPET serves as the matrix material, while CBF acts as the reinforcement. The test specimens were fabricated using a customized fused deposition modeling 3D printer. In this process, customized 3D printer heads were used, which have a unique capability to extrude and deposit print fibers consisting of a CBF core coated with an RPET matrix. The tensile and flexural samples were 3D printed at varying layer spacing.
Findings
The Young’s modulus (E), yield strength (sy) and ultimate tensile strength of the CBF/RPET sample fabricated with 0.7 mm layer spacing are 1.9 times, 1.25 times and 1.8 times greater than neat RPET, respectively. Similarly, the flexural test results showed that the flexural strength of the CBF/RPET sample fabricated at 0.6 mm layer spacing was 47.52 ± 2.00 MPa, which was far greater than the flexural strength of the neat RPET sample (25.12 ± 1.94 MPa).
Social implications
This study holds significant social implications highlighting the growing environmental sustainability and plastic waste recycling concerns. The use of recycled PET material to develop 3D-printed sustainable structures may reduce resource consumption and encourages responsible production practices.
Originality/value
The key innovation lies in the concept of in-nozzle impregnation approach, where RPET is reinforced with CBF to develop a sustainable composite structure. CBF reinforcement has made RPET a superior, sustainable, environmentally friendly material that can reduce the reliance on virgin plastic material for 3D printing.
Details
Keywords
Sushant Negi and Rajesh Kumar Sharma
The purpose of this paper is to provide a better understanding of process parameters that have a significant effect on the shrinkage behaviour of laser-sintered PA 3200GF…
Abstract
Purpose
The purpose of this paper is to provide a better understanding of process parameters that have a significant effect on the shrinkage behaviour of laser-sintered PA 3200GF specimens.
Design/methodology/approach
A five-factor, three-level and face-centred central composite design was used to collect data, and two methods, namely, response surface methodology (RSM) and artificial neural network (ANN) were used for predicting shrinkage. Sensitivity analysis based on the developed empirical equations has been carried out to determine the most significant parameter, which contributes the most to control shrinkage. In addition, a comparative analysis has also been performed for the results obtained by RSM and ANN.
Findings
The results revealed that part bed temperature, scan speed and scan spacing are the three dominant parameters, which have a great influence on shrinkage. Strong interactions between laser power-scan spacing, laser power-scan length and scan speed-scan spacing have been observed. Through sensitive analysis, it is observed that shrinkage is more sensitive to the scan speed variations than other four process parameters.
Practical implications
This study can be used as a guide, and the demonstrated results will provide a good technical database to the different additive manufacturing users of various industries such as automobile, aerospace and medical.
Originality/value
To the best of the authors’ knowledge, this is the first study to report the shrinkage behaviour of laser-sintered PA 3200GF parts fabricated under different sintering conditions.
Details
Keywords
Vishal Mishra, Jitendra Kumar, Sushant Negi and Simanchal Kar
The current study aims to develop a 3D-printed continuous metal fiber-reinforced recycled thermoplastic composite using an in-nozzle impregnation technique.
Abstract
Purpose
The current study aims to develop a 3D-printed continuous metal fiber-reinforced recycled thermoplastic composite using an in-nozzle impregnation technique.
Design/methodology/approach
Recycled acrylonitrile butadiene styrene (RABS) plastic was blended with virgin ABS (VABS) plastic in a ratio of 60:40 weight proportion to develop a 3D printing filament that was used as a matrix material, while post-used continuous brass wire (CBW) was used as a reinforcement. 3D printing was done by using a self-customized print head to fabricate the flexural, compression and interlaminar shear stress (ILSS) test samples to evaluate the bending, compressive and ILSS properties of the build samples and compared with VABS and RABS-B samples. Moreover, the physical properties of the samples were also analyzed.
Findings
Upon three-point bend, compression and ILSS testing, it was found that RABS-B/CBW composite 3D printed with 0.7 mm layer width exhibited a notable improvement in maximum flexural load (Lmax), flexural stress at maximum load (sfmax), flex modulus (Ef) and work of fracture (WOF), compression modulus (Ec) and ILSS properties by 30.5%, 49.6%, 88.4% 13.8, 21.6% and 30.3% respectively.
Originality/value
Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.
Details
Keywords
Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar
This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.
Abstract
Purpose
This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.
Design/methodology/approach
The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.
Findings
The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.
Social implications
This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.
Originality/value
Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.
Details
Keywords
Sushant Negi, Suresh Dhiman and Rajesh Kumar Sharma
This study aims to provide an overview of rapid prototyping (RP) and shows the potential of this technology in the field of medicine as reported in various journals and…
Abstract
Purpose
This study aims to provide an overview of rapid prototyping (RP) and shows the potential of this technology in the field of medicine as reported in various journals and proceedings. This review article also reports three case studies from open literature where RP and associated technology have been successfully implemented in the medical field.
Design/methodology/approach
Key publications from the past two decades have been reviewed.
Findings
This study concludes that use of RP-built medical model facilitates the three-dimensional visualization of anatomical part, improves the quality of preoperative planning and assists in the selection of optimal surgical approach and prosthetic implants. Additionally, this technology makes the previously manual operations much faster, accurate and cheaper. The outcome based on literature review and three case studies strongly suggests that RP technology might become part of a standard protocol in the medical sector in the near future.
Originality/value
The article is beneficial to study the influence of RP and associated technology in the field of medicine.