Dry sliding wear behavior of additively manufactured cenosphere-filled PETG syntactic foam composites
Aircraft Engineering and Aerospace Technology
ISSN: 0002-2667
Article publication date: 15 August 2023
Issue publication date: 13 November 2023
Abstract
Purpose
This study aims to deal with developing composite filaments and investigating the tribological behavior of additively manufactured syntactic foam composites. The primary objective is to examine the suitability of the cenosphere (CS; 0–30 Wt.%) to develop a high-quality lightweight composite structure with improved abrasion strength.
Design/methodology/approach
CS/polyethylene terephthalate glycol (PETG) composite feedstock filaments under optimized extrusion conditions were developed, and a fused filament fabrication process was used to prepare CS-filled PETG composite structures under optimal printing conditions. Significant parameters such as CS (0–30 Wt.%), sliding speed (200–800 rpm) and typical load (10–40 N) were used to minimize the dry sliding wear rate and coefficient of friction for developed composites.
Findings
The friction coefficient and specific wear rate (SWR) are most affected by the CS weight percentage and applied load, respectively. However, nozzle temperature has the least effect on the friction coefficient and SWR. A mathematical model predicts the composite material’s SWR and coefficient of friction with 87.5% and 95.2% accuracy, respectively.
Practical implications
Because of their tailorable physical and mechanical properties, CS/PETG lightweight composite structures can be used in low-density and damage-tolerance applications.
Social implications
CS, an industrial waste material, is used to develop lightweight syntactic foam composites for advanced engineering applications.
Originality/value
CS-reinforced PETG composite filaments were developed to fabricate ultra-light composite structures through a 3D printing routine.
Keywords
Acknowledgements
The authors are grateful to FMS Lab, Mechanical Engineering Department, NIT Silchar for providing experimental facility.
Citation
Kumar, J. and Negi, S. (2023), "Dry sliding wear behavior of additively manufactured cenosphere-filled PETG syntactic foam composites", Aircraft Engineering and Aerospace Technology, Vol. 95 No. 10, pp. 1570-1577. https://doi.org/10.1108/AEAT-03-2023-0087
Publisher
:Emerald Publishing Limited
Copyright © 2023, Emerald Publishing Limited