Anantha Kumar K., Sugunamma V., Sandeep N. and Ramana Reddy J.V.
The purpose of this paper is to scrutinize the heat and mass transfer attributes of three-dimensional bio convective flow of nanofluid across a slendering surface with slip…
Abstract
Purpose
The purpose of this paper is to scrutinize the heat and mass transfer attributes of three-dimensional bio convective flow of nanofluid across a slendering surface with slip effects. The analysis is carried out subject to irregular heat sink/source, thermophoresis and Brownian motion of nanoparticles.
Design/methodology/approach
At first, proper transmutations are pondered to metamorphose the basic flow equations as ODEs. The solution of these ODEs is procured by the consecutive application of Shooting and Runge-Kutta fourth order numerical procedures.
Findings
The usual flow fields along with density of motile microorganisms for sundry physical parameters are divulged via plots and scrutinized. Further, the authors analyzed the impact of same parameters on skin friction, heat and mass transfer coefficients and presented in tables. It is discovered that the variable heat sink/source parameters play a decisive role in nature of the heat and mass transfer rates. The density of motile microorganisms will improve if we add Al-Cu alloy particles in regular fluids instead of Al particles solely. A change in thermophoresis and Brownian motion parameters dominates heat and mass transfer performance.
Originality/value
To the best of the knowledge, no author made an attempt to investigate the flow of nanofluids over a variable thickness surface with bio-convection, Brownian motion and slip effects.
Details
Keywords
Ramadevi B., Sugunamma V., Anantha Kumar K. and Ramana Reddy J.V.
The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat…
Abstract
Purpose
The purpose of this paper is to focus on MHD unsteady flow of Carreau fluid over a variable thickness melting surface in the presence of chemical reaction and non-uniform heat sink/source.
Design/methodology/approach
The flow governing partial differential equations are transformed into ordinary ones with the help of similarity transformations. The set of ODEs are solved by a shooting technique together with the R.K.–Fehlberg method. Further, the graphs are depicted to scrutinize the velocity, concentration and temperature fields of the Carreau fluid flow. The numerical values of friction factor, heat and mass transfer rates are tabulated.
Findings
The results are presented for both Newtonian and non-Newtonian fluid flow cases. The authors conclude that the nature of three typical fields and the physical quantities are alike in both cases. An increase in melting parameter slows down the velocity field and enhances the temperature and concentration fields. But an opposite outcome is noticed with thermal relaxation parameter. Also the elevating values of thermal relaxation parameter/ wall thickness parameter/Prandtl number inflate the mass and heat transfer rates.
Originality/value
This is a new research article in the field of heat and mass transfer in fluid flows. Cattaneo–Christov heat flux model is used. The surface of the flow is assumed to be melting.
Details
Keywords
Jawad Raza, Fateh Mebarek-Oudina and B. Mahanthesh
The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a…
Abstract
Purpose
The purpose of this paper is to present an exploration of multiple slips and temperature dependent thermal conductivity effects on the flow of nano Williamson fluid over a slendering stretching plate in the presence of Joule and viscous heating aspects. The effectiveness of nanoparticles is deliberated by considering Brownian moment and thermophoresis slip mechanisms. The effects of magnetism and radiative heat are also deployed.
Design/methodology/approach
The governing partial differential equations are non-dimensionalized and reduced to multi-degree ordinary differential equations via suitable similarity variables. The subsequent non-linear problem treated for numerical results. To measure the amount of increase/decrease in skin friction coefficient, Nusselt number and Sherwood number, the slope of linear regression line through the data points are calculated. Statistical approach is implemented to analyze the heat transfer rate.
Findings
The results show that temperature distribution across the flow decreases with thermal conductivity parameter. The maximum friction factor is ascertained at stronger magnetic field.
Originality/value
In the current paper, the magneto-nano Williamson fluid flow inspired by a stretching sheet of variable thickness is examined numerically. The rationale of the present study is to generalize the studies of Mebarek-Oudina and Makinde (2018) and Williamson (1929).
Details
Keywords
Anantha Kumar K., Ramana Reddy J.V., Sugunamma V. and N. Sandeep
The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential…
Abstract
Purpose
The purpose of this paper is to propose the knowledge of thermal transport of magneto hydrodynamic non-Newtonian fluid flow over a melting sheet in the presence of exponential heat source.
Design/methodology/approach
The group of PDE is mutated as dimension free with the assistance of similarity transformations and these are highly nonlinear and coupled. The authors solved the coupled ODE’s with the help of fourth-order Runge–Kutta based shooting technique. The impact of dimensionless sundry parameters on three usual distributions of the flow was analyzed and bestowed graphically. Along with them friction factor, heat and mass transfer rates have been assessed and represented with the aid of table.
Findings
Results exhibited that all the flow fields (velocity, concentration and temperature) are decreasing functions of melting parameter. Also the presence of cross-diffusion highly affects the heat and mass transfer performance.
Originality/value
Present paper deals with the heat and mass transfer characteristics of magnetohydrodynamics flow of non-Newtonian fluids past a melting surface. The effect of exponential heat source is also considered. Moreover this is a new work in the field of heat transfer in non-Newtonian fluid flows.
Details
Keywords
Muhammad Sohail and Sana Tariq
Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary…
Abstract
Purpose
Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.
Design/methodology/approach
Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.
Findings
Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.
Originality/value
The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.
Details
Keywords
C. Sulochana, Samrat S.P. and Sandeep N.
The purpose of this paper is to theoretically investigate the boundary layer nature of magnetohydrodynamic nanofluid flow past a vertical expanding surface in a rotating geometry…
Abstract
Purpose
The purpose of this paper is to theoretically investigate the boundary layer nature of magnetohydrodynamic nanofluid flow past a vertical expanding surface in a rotating geometry with viscous dissipation, thermal radiation, Soret effect and chemical reaction.
Design/methodology/approach
The self-similarity variables are deliberated to transmute the elementary governing equations. The analytical perturbation technique is used to elaborate the united nonlinear ODEs.
Findings
To check the disparity on the boundary layer nature, the authors measured two nanofluids, namely, Cu-water and Cu-Kerosene based nanofluids. It is found that the Cu-water is effectively enhancing the thermal conductivity of the flow when compared with the Cu-kerosene.
Originality/value
Till now no analytical studies are reported on heat transfer enhancement of the rotating nanofluid flow by considering two different base fluids.
Details
Keywords
Mehboob Ali, F. Sultan, Waqar Azeem Khan, M. Shahzad, Hina Arif and M. Irfan
The purpose of this paper is to investigate the heat transportation rate by using Cattaneo–Christov heat flux model. Furthermore, homogeneous-heterogeneous reaction is also…
Abstract
Purpose
The purpose of this paper is to investigate the heat transportation rate by using Cattaneo–Christov heat flux model. Furthermore, homogeneous-heterogeneous reaction is also deliberated in the modeling of concentration expression.
Design/methodology/approach
The nonlinear PDEs are reduced to ODEs via implementation of applicable transformations. Numerical scheme bvp4c is used to obtain convergent solutions.
Findings
The main findings are to characterize the generalized Fourier’s heat flux and homogeneous-heterogeneous reactions in 3D flow of non-Newtonian cross fluid.
Originality/value
It is to certify that this paper is neither published earlier nor submitted elsewhere.
Details
Keywords
Mahantesh M. Nandeppanavar, Kemparaju M.C. and N. Raveendra
This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and…
Abstract
Purpose
This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and convective boundary conditions.
Design/methodology/approach
The main partial differential equations of the flow, heat and concentration profiles were rehabilitated to nonlinear ordinary differential equations by using an appropriate similarity transformation. The resultant nonlinear ordinary differential equations (ODEs) are solved numerically applying fourth-order Runge–Kutta shooting technique and functions of ODE45 from MATLAB.
Findings
The effect of convective heat transfer, buoyancy ratio parameter, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number over velocity, temperature and concentration profiles, equivalent to abundant somatic parameters were graphically scrutinized.
Originality/value
All the results are very promising and further there is got good agreement of results when compared with earlier published results at limiting conditions.
Details
Keywords
Mahantesh M. Nandeppanavar, Kemparaju M.C. and Raveendra N.
This paper aims to find the influence of convective heat transfer, buoyancy proportions, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number on…
Abstract
Purpose
This paper aims to find the influence of convective heat transfer, buoyancy proportions, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number on velocity, temperature and concentration profiles.
Design/methodology/approach
This paper explores the heat and mass transfer of a stagnation point stream of free convective Casson fluid over a moving vertical plate with nonlinear thermal radiation and convective boundary restrictions. The governing PDEs of stream, heat and concentration profiles were reformed into an arrangement of nonlinear ODEs by using similarity transformation. This framework was then tackled numerically by applying forth-order RK shooting strategy.
Findings
Distribution of flow, velocity and temperature profiles for different values of governing parameters are analyzed.
Originality/value
The original results are depicted in terms of plots.
Details
Keywords
Mohammad Saeid Aghighi, Christel Metivier and Hamed Masoumi
The purpose of this paper is to analyze the natural convection of a yield stress fluid in a square enclosure with differentially heated side walls. In particular, the Casson model…
Abstract
Purpose
The purpose of this paper is to analyze the natural convection of a yield stress fluid in a square enclosure with differentially heated side walls. In particular, the Casson model is considered which is a commonly used model.
Design/methodology/approach
The coupled conservation equations of mass, momentum and energy related to the two-dimensional steady-state natural convection within square enclosures are solved numerically by using the Galerkin's weighted residual finite element method with quadrilateral, eight nodes elements.
Findings
Results highlight a small degree of the shear-thinning in the Casson fluids. It is shown that the yield stress has a stabilizing effect since the convection can stop for yield stress fluids while this is not the case for Newtonian fluids. The heat transfer rate, velocity and
Originality/value
The originality of the present study concerns the comprehensive and detailed solutions of the natural convection of Casson fluids in square enclosures with differentially heated side walls. It is shown that there exists a major difference between the cases of Casson and Bingham models, and hence using the Bingham model for analyzing the viscoplastic behavior of the fluids which follow the Casson model (such as blood) may not be accurate. Finally, a correlation is proposed for the mean Nusselt number