Qing-Yun Deng, Shun-Peng Zhu, Jin-Chao He, Xue-Kang Li and Andrea Carpinteri
Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain…
Abstract
Purpose
Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain state. Hence, this study aims how to effectively evaluate the multiaxial random/variable amplitude fatigue life.
Design/methodology/approach
Recent studies on critical plane method under multiaxial random/variable amplitude loading are reviewed, and the computational framework is clearly presented in this paper.
Findings
Some basic concepts and latest achievements in multiaxial random/variable amplitude fatigue analysis are introduced. This review summarizes the research status of four main aspects of multiaxial fatigue under random/variable amplitude loadings, namely multiaxial fatigue criterion, method for critical plane determination, cycle counting method and damage accumulation criterion. Particularly, the latest achievements of multiaxial random/variable amplitude fatigue using critical plane methods are classified and highlighted.
Originality/value
This review attempts to provide references for further research on multiaxial random/variable amplitude fatigue and to promote the development of multiaxial fatigue from experimental research to practical engineering application.
Details
Keywords
Shun-Peng Zhu, Xiaopeng Niu, Behrooz Keshtegar, Changqi Luo and Mansour Bagheri
The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In…
Abstract
Purpose
The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In view of the aim of this paper, it is essential to develop an advanced approach to efficiently quantify their influences and evaluate the fatigue life of turbine bladed disks.
Design/methodology/approach
In this study, a novel combined machine learning strategy is performed to fatigue assessment of turbine bladed disks. Proposed model consists of two modeling phases in terms of response surface method (RSM) and support vector regression (SVR), namely RSM-SVR. Two different input sets obtained from basic variables were used as the inputs of RSM, then the predicted results by RSM in first phase is used as inputs of SVR model by using a group data-handling strategy. By this way, the nonlinear flexibility of SVR inputs is improved and RSM-SVR model presents the high-tendency and efficiency characteristics.
Findings
The accuracy and tendency of the RSM-SVR model, applied to the fatigue life estimation of turbine bladed disks, are validated. The results indicate that the proposed model is capable of accurately simulating the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction strategy compared to RSM and SVR for fatigue analysis of complex structures.
Originality/value
The results indicate that the proposed model is capable of accurately simulate the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction compared to RSM and SVRE for fatigue analysis of turbine bladed disk.
Details
Keywords
Qiang Liu, Shun-Peng Zhu, Zheng-Yong Yu and Ran Ding
Transport is an integral part of the nuclear fuel cycle. The procedures employed are designed and conducted to ensure the public and environment protection both routinely and when…
Abstract
Purpose
Transport is an integral part of the nuclear fuel cycle. The procedures employed are designed and conducted to ensure the public and environment protection both routinely and when transport accidents occur. According to this, the purpose of this paper is to focus on a coupled thermal-drop impact analysis-based safety assessment of a nuclear fuel cask.
Design/methodology/approach
For the cask, high altitude falling and fire accidents are the two most serious accidents during its transportation. In this paper, a sequentially coupled thermal-drop impact analysis is performed by using a nuclear fuel cask model for safety assessment. High altitude falling and fire accidents of the nuclear fuel cask were conducted by using finite element simulations for coupled thermal-drop impact analysis.
Findings
Results showed that the cask can withstand a drop test and survive a fire of 800°C for 30 minutes. In addition, an improved design is explored and evaluated, which provides a reference for structural design and safety assessment of nuclear fuel casks.
Originality/value
A coupled thermal-drop impact analysis-based safety assessment procedure is developed for the nuclear fuel cask.
Details
Keywords
P.A. Montenegro, José A.F.O. Correia, Abilio M.P. de Jesus and Rui A.B. Calçada