Search results
1 – 6 of 6Shanmugan Subramani and Mutharasu Devarajan
Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…
Abstract
Purpose
Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.
Design/methodology/approach
Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.
Findings
Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.
Originality/value
Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.
Details
Keywords
Wei Qiang Lim, Mutharasu Devarajan and Shanmugan Subramani
This paper aims to study the influence of the Cu-Al2O3 film-coated Cu substrate as a thermal interface material (TIM) on the thermal and optical behaviour of the light-emitting…
Abstract
Purpose
This paper aims to study the influence of the Cu-Al2O3 film-coated Cu substrate as a thermal interface material (TIM) on the thermal and optical behaviour of the light-emitting diode (LED) package and the annealing effect on the thermal and optical properties of the films.
Design/methodology/approach
A layer-stacking technique has been used to deposit the Cu-Al2O3 films by means of magnetron sputtering, and the annealing process was conducted on the synthesized films.
Findings
In this paper, it was found that the un-annealed Cu-Al2O3–coated Cu substrate exhibited low value of thermal resistance compared to the bare Cu substrate and to the results of previous works. Also the annealing effect does not have a significant impact on the changes of properties of the films.
Research limitations/implications
It is deduced that the increase of the Cu layer thickness can further improve the thermal properties of the deposited film, which can reduce the thermal resistance of the package in system-level analysis.
Practical implications
The paper suggested that the Cu-Al2O3–coated Cu substrate can be used as alternative TIM for the thermal management of the application of LEDs.
Originality value
In this paper, the Cu substrate has been used as the substrate for the Cu-Al2O3 films, as the Cu substrate has higher thermal conductivity compared to the Al substrate as shown in previous work.
Details
Keywords
Muna E. Raypah, Dheepan M.K., Mutharasu Devarajan, Shanmugan Subramani and Fauziah Sulaiman
Thermal behavior of light-emitting diode (LED) device under different operating conditions must be known to enhance its reliability and efficiency in various applications. The…
Abstract
Purpose
Thermal behavior of light-emitting diode (LED) device under different operating conditions must be known to enhance its reliability and efficiency in various applications. The purpose of this study is to report the influence of input current and ambient temperature on thermal resistance of InGaAlP low-power surface-mount device (SMD) LED.
Design/methodology/approach
Thermal parameters of the LED were measured using thermal transient measurement via Thermal Transient Tester (T3Ster). The experimental results were validated using computational fluid dynamics (CFD) software.
Findings
As input current increases from 50 to 90 mA at 25°C, the relative increase in LED package (ΔRthJS) and total thermal resistance (ΔRthJA) is about 10 and 4 per cent, respectively. In addition, at 50 mA and ambient temperature from 25 to 65°C, the ΔRthJS and ΔRthJA are roughly 28 and 22 per cent, respectively. A good agreement between simulation and experiment results of junction temperature.
Originality/value
Most of previous studies have focused on thermal management of high-power LEDs. There were no studies on thermal analysis of low-power SMD LED so far. This work will help in predicting the thermal performance of low-power LEDs in solid-state lighting applications.
Details
Keywords
Shanmugan Subramani and Mutharasu Devarajan
Light emitting diode (LED) has been the best resource for commercial and industrial lighting applications. However, thermal management in high power LEDs is a major challenge in…
Abstract
Purpose
Light emitting diode (LED) has been the best resource for commercial and industrial lighting applications. However, thermal management in high power LEDs is a major challenge in which the thermal resistance (Rth) and rise in junction temperature (TJ) are critical parameters. The purpose of this work is to evaluate the Rth and Tj of the LED attached with the modified heat transfer area of the heatsink to improve thermal management.
Design/methodology/approach
This paper deals with the design of metal substrate for heatsink applications where the surface area of the heatsink is modified. Numerical simulation on heat distribution proved the influence of the design aspects and surface area of heatsink.
Findings
TJ was low for outward step design when compared to flat heatsink design (ΔT ∼ 38°C) because of increase in surface area from 1,550 mm2 (flat) to 3,076 mm2 (outward step). On comparison with inward step geometry, the TJ value was low for outward step configuration (ΔTJ ∼ 6.6°C), which is because of efficient heat transfer mechanism with outward step design. The observed results showed that outward step design performs well for LED testing by reducing both Rth and TJ for different driving currents.
Originality/value
This work is authors’ own design and also has the originality for the targeted application. To the best of the authors’ knowledge, the proposed design has not been tried before in the electronic or LED applications.
Details
Keywords
Shanmugan Subramani and Mutharasu Devarajan
The purpose of this research is to study the effect of thickness and surface properties of ZnO solid thin film for heat dissipation application in LED. Heat dissipation in…
Abstract
Purpose
The purpose of this research is to study the effect of thickness and surface properties of ZnO solid thin film for heat dissipation application in LED. Heat dissipation in electronic packaging can be improved by applying a thermally conductive interface material (TIM) and hence the junction temperature will be maintained. ZnO is one of the oxide materials and used as a filler to increase the thermal conductivity of thermal paste. The thickness of these paste-type material cannot be controlled which restricts the heat flow from the LED junction to ambient. The controlled thickness is only possible by using a solid thin-film interface material.
Design/methodology/approach
Radio Frequency (RF)-sputtered ZnO thin film on Cu substrates were used as a heat sink for high-power LED and the thermal performance of various ZnO thin film thickness on changing total thermal resistance (R th-tot) and rise in junction temperature were tested. Thermal transient analysis was used to study the performance of the given LED. The influence of surface roughness profile was also tested on the LED performance.
Findings
The junction temperature was high (6.35°C) for 200 nm thickness of ZnO thin film boundary condition when compared with bare Cu substrates. Consecutively, low R th-tot values were noticed with the same boundary condition. The 600 nm thickness of ZnO thin film exhibited high R th-tot and interface resistance than the other thicknesses. Bond Line Thickness of the interface material was influenced on the interface thermal resistance which was decreased with increased BLT. Surface roughness parameter showed an immense effect on thermal transport, and hence, low R th (47.6 K/W) value was noticed with low film roughness (7 nm) as compared with bare Cu substrate (50.8 K/W) where the surface roughness was 20.5 nm.
Originality/value
Instead of using thermal paste, solid thin film ZnO is used as TIM and coated Cu substrates were used as a heat sink. The thickness can be controlled, and it is a new approach for reducing the BLT between the metal core printed circuit board and heat sink.
Details
Keywords
Shanmugan Subramani, Teeba Nadarajah and Mutharasu Devarajan
Surface configuration at the interface between two materials makes a huge difference on thermal resistance. Thermal transient analysis is a powerful tool for thermal…
Abstract
Purpose
Surface configuration at the interface between two materials makes a huge difference on thermal resistance. Thermal transient analysis is a powerful tool for thermal characterization of complex structures like LEDs. The purpose of this paper is to report the influence of surface finish on thermal resistance.
Design/methodology/approach
Surface of heat sink was modified into two categories: machined as channel like structure; and polished using mechanical polisher and tested with 3W green LED for thermal resistance analysis.
Findings
The observed surface roughness of rough and polished surface was 44 nm and 4 nm, respectively. Structure function analysis was used to determine the thermal resistance between heat sink and MCPCB board. The observed thermal resistance from junction to ambient (RthJA) value measured with thermal paste at 700 mA was lower (34.85 K/W) for channel like surface than rough surface (36.5 K/W). The calculated junction temperature (TJ) for channel like surface and polished surface was 81.29°C and 85.24°C, respectively.
Research limitations/implications
Channelled surface aids in increasing bond line thickness. Surface polishing helps to reduce the air gaps between MCPCB and heat sink and also to increase the surface contact conductance.
Practical implications
The proposed method of surface modification can be easily done at laboratory level with locally available techniques.
Originality/value
Much of the available literature is only concentrating on the design modification and heat transfer from fins to ambient. There was little research on modification of top surface of the heat sink and the proposed concept would give good results and also it will make the material cost reduction as well as material too.
Details