Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 May 2006

Rezia Molfino, Sandro Costo, Francesco Cepolina and Matteo Zoppi

To present a new special explosive ordnance disposal (EOD) robot designed to operate onboard airplanes.

435

Abstract

Purpose

To present a new special explosive ordnance disposal (EOD) robot designed to operate onboard airplanes.

Design/methodology/approach

The design approach adopted is multidisciplinary: mechanical and control architectures are conceived simultaneously. Modularity and lifecycle are considered. Motion and EOD tasks are controlled in tele‐operation.

Findings

A new EOD robot was designed in detail and it is ready to be built. A dynamic simulator has been written and set‐up, including a virtual reality module. The simulator is used to define the control logics. Simulation results are satisfactory. The simulator can be used as a training platform for the bomb squads.

Research limitations/implications

The intent to keep the cost of the robot low conditioned the selection of the materials. Only aluminium and standard composites (like carbon fibers composites) have been used. A higher degree of freedom of the arm could increase the usability of the system; to limit the cost, the degree of freedom was limited to seven. A decision support system based on an expert system interfaced with the simulator could improve the performance of the system.

Practical implications

A new EOD robot will be built and commercialised soon by the industrial partner Ansaldo Ricerche.

Originality/value

The EOD robots available for use inside aircrafts are discussed. A new system named AirEOD is presented, including mobile platform, dexterous arm and all related design and control issues.

Details

Industrial Robot: An International Journal, vol. 33 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1
Per page
102050