H.J. ANTÚNEZ and S.R. IDELSOHN
The pseudo‐concentration method is applied to the analysis of transient processes. A simple, easy‐to‐handle model is obtained by keeping an Eulerian description: it does not…
Abstract
The pseudo‐concentration method is applied to the analysis of transient processes. A simple, easy‐to‐handle model is obtained by keeping an Eulerian description: it does not require remeshing after a certain amount of plastic deformation. The range of applicability of the method is extended to non‐confined (even with several free surfaces) processes. It is shown the need of distinct handling of free surfaces according to their orientation to the direction of the flow. A seamless tube rolling process, a cylinder upsetting and a backward extrusion are modelled. Experimental data and results obtained by other methods are used to compare and discuss the performance of the model.
Details
Keywords
A. Larese, R. Rossi, E. Oñate and S.R. Idelsohn
The purpose of this paper is to evaluate the possibilities of the particle finite element method for simulation of free surface flows.
Abstract
Purpose
The purpose of this paper is to evaluate the possibilities of the particle finite element method for simulation of free surface flows.
Design/methodology/approach
A numerical simulation of a number of examples for which experimental data are available is performed. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Some examples are chosen from the civil engineering field: a study of the flow over a flip bucket is analyzed for both 2D and 3D models, and the flow under a planar sluice gate is studied in 2D. Other examples, such as a 2D and 3D “dam break” with an obstacle are taken from the smooth particle hydrodynamics literature.
Findings
Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Different mesh sizes are considered for evaluating their influence on the final solution.
Originality/value
Details of the input data for all the examples studied are given. The aim is to identify benchmark problems for future comparisons between different numerical approaches for free surface flows.
Details
Keywords
Sergio Rodolfo Idelsohn, Norberto Marcelo Nigro, Juan Marcelo Gimenez, Riccardo Rossi and Julio Marcelo Marti
The purpose of this paper is to highlight the possibilities of a novel Lagrangian formulation in dealing with the solution of the incompressible Navier‐Stokes equations with very…
Abstract
Purpose
The purpose of this paper is to highlight the possibilities of a novel Lagrangian formulation in dealing with the solution of the incompressible Navier‐Stokes equations with very large time steps.
Design/methodology/approach
The design of the paper is based on introducing the origin of this novel numerical method, originally inspired on the Particle Finite Element Method (PFEM), summarizing the previously published theory in its moving mesh version. Afterwards its extension to fixed mesh version is introduced, showing some details about the implementation.
Findings
The authors have found that even though this method was originally designed to deal with heterogeneous or free‐surface flows, it can be competitive with Eulerian alternatives, even in their range of optimal application in terms of accuracy, with an interesting robustness allowing to use large time steps in a stable way.
Originality/value
With this objective in mind, the authors have chosen a number of benchmark examples and have proved that the proposed algorithm provides results which compare favourably, both in terms of solution time and accuracy achieved, with alternative approaches, implemented in in‐house and commercial codes.
Details
Keywords
Rainald Löhner, Lingquan Li, Orlando Antonio Soto and Joseph David Baum
This study aims to evaluate blast loads on and the response of submerged structures.
Abstract
Purpose
This study aims to evaluate blast loads on and the response of submerged structures.
Design/methodology/approach
An arbitrary Lagrangian–Eulerian method is developed to model fluid–structure interaction (FSI) problems of close-in underwater explosions (UNDEX). The “fluid” part provides the loads for the structure considers air, water and high explosive materials. The spatial discretization for the fluid domain is performed with a second-order vertex-based finite volume scheme with a tangent of hyperbola interface capturing technique. The temporal discretization is based on explicit Runge–Kutta methods. The structure is described by a large-deformation Lagrangian formulation and discretized via finite elements. First, one-dimensional test cases are given to show that the numerical method is free of mesh movement effects. Thereafter, three-dimensional FSI problems of close-in UNDEX are studied. Finally, the computation of UNDEX near a ship compartment is performed.
Findings
The difference in the flow mechanisms between rigid targets and deforming targets is quantified and evaluated.
Research limitations/implications
Cavitation is modeled only approximately and may require further refinement/modeling.
Practical implications
The results demonstrate that the proposed numerical method is accurate, robust and versatile for practical use.
Social implications
Better design of naval infrastructure [such as bridges, ports, etc.].
Originality/value
To the best of the authors’ knowledge, this study has been conducted for the first time.
Details
Keywords
Soheil Bazazzadeh, Arman Shojaei, Mirco Zaccariotto and Ugo Galvanetto
The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow…
Abstract
Purpose
The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow theory, a Lagrangian formulation is used to cope with non-linear free-surface waves of sloshing water in 2D and 3D rectangular and square tanks.
Design/methodology/approach
In fact, PDDO recasts the local differentiation operator through a nonlocal integration scheme. This makes the method capable of determining the derivatives of a field variable, more precisely than direct differentiation, when jump discontinuities or gradient singularities come into the picture. The issue of gradient singularity can be found in tanks containing vertical/horizontal baffles.
Findings
The application of PDDO helps to obtain the velocity field with a high accuracy at each time step that leads to a suitable geometry updating for the procedure. Domain/boundary nodes are updated by using a second-order finite difference time algorithm. The method is applied to the solution of different examples including tanks with baffles. The accuracy of the method is scrutinized by comparing the numerical results with analytical, numerical and experimental results available in the literature.
Originality/value
Based on the investigations, PDDO can be considered a reliable and suitable approach to cope with sloshing problems in tanks. The paper paves the way to apply the method for a wider range of problems such as compressible fluid flow.
Details
Keywords
Wei-Hai Yuan, Wei Zhang, Beibing Dai and Yuan Wang
Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising…
Abstract
Purpose
Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising method to solve large deformation problems. This study aims to develop a computational framework for modelling the hydro-mechanical coupled porous media at large deformation based on the PFEM.
Design/methodology/approach
The PFEM is extended by adopting the linear and quadratic triangular elements for pore water pressure and displacements. A six-node triangular element is used for modelling two-dimensional problems instead of the low-order three-node triangular element. Thus, the numerical instability induced by volumetric locking is avoided. The Modified Cam Clay (MCC) model is used to describe the elasto-plastic soil behaviour.
Findings
The proposed approach is used for analysing several consolidation problems. The numerical results have demonstrated that large deformation consolidation problems with the proposed approach can be accomplished without numerical difficulties and loss of accuracy. The coupled PFEM provides a stable and robust numerical tool in solving large deformation consolidation problems. It is demonstrated that the proposed approach is intrinsically stable.
Originality/value
The PFEM is extended to consider large deformation-coupled hydro-mechanical problem. PFEM is enhanced by using a six-node quadratic triangular element for displacement and this is coupled with a four-node quadrilateral element for modelling excess pore pressure.
Details
Keywords
This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…
Abstract
This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.
Details
Keywords
Jonathan Núñez Aedo, Marcela A. Cruchaga and Mario A. Storti
This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.
Abstract
Purpose
This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.
Design/methodology/approach
A fluid–solid coupled algorithm is proposed to describe the motion of a rigid buoy under the effects of waves. The Navier–Stokes equations are solved with the open-source finite volume package Code Saturne, in which a free-surface capture technique and equations of motion for the solid are implemented. An ad hoc experiment on a laboratory scale is built. A buoy is placed into a tank partially filled with water; the tank is mounted into a shake table and subjected to controlled motion that promotes waves. The experiment allows for recording the evolution of the free surface at the control points using the ultrasonic sensors and the movement of the buoy by tracking the markers by postprocessing the recorded videos. The numerical results are validated by comparison with the experimental data.
Findings
The implemented free-surface technique, developed within the framework of the finite-volume method, is validated. The best-obtained agreement is for small amplitudes compatible with the waves evolving under deep-water conditions. Second, the algorithm proposed to describe rigid-body motion, including wave analysis, is validated. The numerical body motion and wave pattern satisfactorily matched the experimental data. The complete 3D proposed model can realistically describe buoy motions under the effects of stationary waves.
Originality/value
The novel aspects of this study encompass the implementation of a fluid–structure interaction strategy to describe rigid-body motion, including wave effects in a finite-volume context, and the reported free-surface and buoy position measurements from experiments. To the best of the authors’ knowledge, the numerical strategy, the validation of the computed results and the experimental data are all original contributions of this work.
Details
Keywords
L.M.J.S. Dinis, R.M. Natal Jorge and J. Belinha
The purpose of this paper is to extend the natural neighbour radial point interpolation method (NNRPIM) to the dynamic analysis (free vibrations and forced vibrations) of…
Abstract
Purpose
The purpose of this paper is to extend the natural neighbour radial point interpolation method (NNRPIM) to the dynamic analysis (free vibrations and forced vibrations) of two‐dimensional, three‐dimensional and bending plate problems.
Design/methodology/approach
The NNRPIM shape‐function construction is briefly presented, as are the dynamic equations and the mode superposition method is used in the forced vibration analysis. Several benchmark examples of two‐dimensional and plate bending problems are solved and compared with the three‐dimensional NNRPIM formulation. The obtained results are compared with the available exact solutions and the finite element method (FEM) solutions.
Findings
The developed NNRPIM approach is a good alternative to the FEM for the solution of dynamic problems, once the obtained results with the EFGM shows a high similarity with the obtained FEM results and for the majority of the studied examples the NNRPIM results are more close to the exact solution results.
Research limitations/implications
Comparing the FEM and the NNRPIM, the computational cost of the NNRPIM is higher.
Originality/value
The paper demonstrates extension of the NNRPIM to the dynamic analysis of two‐dimensional, three‐dimensional and bending plate problems. The elimination of the shear‐locking phenomenon in the NNRPIM plate bending formulation. The various solved examples prove a high convergence rate and accuracy of the NNRPIM.
Details
Keywords
P. Léger and E.L. Wilson
The evaluation of linear dynamic response analysis of large structures by vector superposition requires, in its traditional formulation, the solution of a large and expensive…
Abstract
The evaluation of linear dynamic response analysis of large structures by vector superposition requires, in its traditional formulation, the solution of a large and expensive eigenvalue problem. A method of solution based on a Ritz transformation to a reduced system of generalized coordinates using load dependent vectors generated from the spatial distribution of the dynamic loads is shown to maintain the high expected accuracy of modern computer analysis and significantly reduces the execution time over eigensolution procedures. New computational variants to generate load dependent vectors are presented and error norms are developed to control the convergence characteristics of load dependent Ritz solutions. Numerical applications on simple structural systems are used to show the relative efficiency of the proposed solution procedures.