F. H. Hamdan and P. J. Dowling
This paper, which is concerned with fluid‐structure interactionanalysis, is a sequel to our earlier paper which gave an introduction to thenumerical treatment of such systems. The…
Abstract
This paper, which is concerned with fluid‐structure interaction analysis, is a sequel to our earlier paper which gave an introduction to the numerical treatment of such systems. The paper is divided into five main sections. In the first two, a state‐of‐the‐art review on near‐field and far‐field fluid structure interaction is presented. In attempting to highlight where current research should be directed, only the most widely used computer codes are reviewed in the third section. Conclusions are presented in the fourth section.
Details
Keywords
R.K. Singh, T. Kant and A. Kakodkar
This paper demonstrates the capability of staggered solution procedure for coupled fluid‐structure interaction problems. Three possible computational paths for coupled problems…
Abstract
This paper demonstrates the capability of staggered solution procedure for coupled fluid‐structure interaction problems. Three possible computational paths for coupled problems are described. These are critically examined for a variety of coupled problems with different types of mesh partitioning schemes. The results are compared with the reported results by continuum mechanics priority approach—a method which has been very popular until recently. Optimum computational paths and mesh partitionings for two field problems are indicated. Staggered solution procedure is shown to be quite effective when optimum path and partitionings are selected.
This paper is concerned with the treatment offluid‐structure interaction problems. The paper is divided in anumber of sections. The first is an introduction to thehistorical…
Abstract
This paper is concerned with the treatment of fluid‐structure interaction problems. The paper is divided in a number of sections. The first is an introduction to the historical background which lead to the numerical approach being used today. In the second the main factors affecting the numerical treatment of fluid‐structure interaction problems are identified. The next eight sections discuss each of these factors separately. Conclusions are drawn in section eleven.
Details
Keywords
Lorraine G. Olson and Klaus‐Jürgen Bathe
An infinite element based on the doubly asymptotic approximation (DAA) for use in finite element analysis of fluid—structure interactions is presented. Fluid finite elements model…
Abstract
An infinite element based on the doubly asymptotic approximation (DAA) for use in finite element analysis of fluid—structure interactions is presented. Fluid finite elements model the region near the solid. Infinite elements account for the effects of the outer fluid on the inner region. The DAA‐based infinite elements involve an approximate calculation of the added mass using static mapped infinite elements, plus a consistent damping term. Simple test analyses for a range of fluid properties demonstrate the performance of the solution technique. The analyses of a Helmholtz resonator (open pipe) and a circular plate in water indicate the practical use of the solution approach.
There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the…
Abstract
Purpose
There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the relationship between the flow inside the impeller and the vibration of the blade; study the influence of material properties on flow field and vibration of centrifugal blades.
Design/methodology/approach
First, a bi-directional fluid-structure coupling finite element numerical model of the supersonic semi-open centrifugal impeller is established based on the Workbench platform. Then, the calculation results of impeller polytropic efficiency and stage total pressure ratio are compared with the experimental results from the available literature. Finally, the flow field and vibrational characteristics of 17-4PH (PHB), aluminum alloy (AAL) and carbon fiber-reinforced plastic (CFP) blades are compared under different operating conditions.
Findings
The results show that the flow fields performance and blade vibration influence each other. The flow fields performance and vibration resistance of CFP blades are higher than those of 17-4PH (PHB) and aluminum alloy (AAL) blades. At the design speed, compared with the PHB blades and AAL blades, the CFP blades deformation is reduced by 34.5% and 9%, the stress is reduced by 69.6% and 20% and the impeller pressure ratio is increased by 0.8% and 0.14%, respectively.
Originality/value
The importance of fluid-structure interaction to the aerodynamic and structural design of centrifugal impeller is revealed, and the superiority over composite materials in the application of centrifugal impeller is verified.
Details
Keywords
R.K. SINGH, T. KANT and A. KAKODKAR
Three‐dimensional transient analysis of a submerged cylindrical shell is presented. Three‐dimensional trilinear eight‐noded isoparametric fluid element with pressure variable as…
Abstract
Three‐dimensional transient analysis of a submerged cylindrical shell is presented. Three‐dimensional trilinear eight‐noded isoparametric fluid element with pressure variable as unknown is coupled to a nine‐noded degenerate shell element. Staggered solution scheme is shown to be very effective for this problem. This allows significant flexibility in selecting an explicit or implicit integrator to obtain the solution in an economical way. Three‐dimensional transient analysis of the coupled shell fluid problem demonstrates that inclusion of bending mode is very important for submerged tube design—a factor which has not received attention, since most of the reported results are based on simplified two‐dimensional plane strain analysis.
Details
Keywords
F. Daneshmand and S. Niroomandi
This paper seeks to extend the application of the natural neighbour Galerkin method to vibration analysis of fluid‐structure interaction problems.
Abstract
Purpose
This paper seeks to extend the application of the natural neighbour Galerkin method to vibration analysis of fluid‐structure interaction problems.
Design/methodology/approach
The natural element method (NEM) which is a meshless technique is used to simulate the vibration analysis of the fluid‐structure interaction systems. The method uses the natural neighbour interpolation for the construction of test and trial functions. Displacement variable is used for both the solid and the fluid domains, whereas the fluid displacement is written as the gradient of a potential function. Two classical examples are considered: free vibration of a flexible cavity filled with liquid and vibration of an open vessel containing liquid. The corresponding eigenvalue problems are solved and the results are compared with the finite element method (FEM) and analytical solutions to show the accuracy and convergence of the method.
Findings
The performance of the NEM is investigated in the computation of the vibration modes of the fluid‐structure interaction problems. Good agreement with analytical and FEM solutions are observed. Through the notable obtained results, it is found that the NEM can also be used in vibration analysis of fluid‐structure interaction problems as it has been successfully applied to some problems in solid and fluid mechanics during the recent years.
Originality/value
In spite of notable achievements in solving some problems in solid and fluid mechanics using NEM, the vibration analysis of fluid‐structure interaction problems, as considered in this paper, has not been investigated so far.
Details
Keywords
Jhojan Enrique Rojas, Othmane Bendaou, Abdelkhalak El Hami and Domingos Rade
The purpose of this paper is to present a deterministic, stochastic and reliability analysis through numerical simulations in 2D and 3D dynamic fluid‐structure interaction…
Abstract
Purpose
The purpose of this paper is to present a deterministic, stochastic and reliability analysis through numerical simulations in 2D and 3D dynamic fluid‐structure interaction problems.
Design/methodology/approach
The perturbation methods allied to reliability analysis are applied to fluid‐structure finite element models. Reliability analysis couples finite element analysis with first and second order reliability methods and ant colony optimization in a modified first order reliability method.
Findings
Results obtained show the potentialities of the proposed methodology and encourage improvement of this procedure for use in complex coupled fluid‐structure systems.
Originality/value
The understanding of the mechanical interaction between a fluid and an elastic solid has a capital importance in several industrial applications. In order to couple the behaviour of two different media, deterministic models have been proposed. However, stochastic analysis has been developed to deal with the statistical nature of fluid‐structure interaction parameters. Moreover, probabilistic‐based reliability analysis intends to find safe and cost‐effective projects.
Details
Keywords
Wei Li, Leilei Ji, Weidong Shi, Ling Zhou, Xiaoping Jiang and Yang Zhang
The purpose of this paper is to experimentally and numerically study the transient hydraulic impact and overall performance during startup accelerating process of mixed-flow pump.
Abstract
Purpose
The purpose of this paper is to experimentally and numerically study the transient hydraulic impact and overall performance during startup accelerating process of mixed-flow pump.
Design/methodology/approach
In this study, the impeller rotor vibration characteristics during the starting period under the action of fluid–structure interaction was investigated, which is based on the bidirectional synchronization cooperative solving method for the flow field and impeller structural response of the mixed-flow pump. Experimental transient external characteristic and the transient dimensionless head results were compared with the numerical calculation results, to validate the accuracy of numerical calculation method. Besides, the deformation and dynamic stress distribution of the blade under the stable rotating speed and accelerating condition were studied based on the bidirectional fluid–structure interaction.
Findings
The results show that the combined action of complex hydrodynamic environment and impeller centrifugal force in the startup accelerating process makes the deformation and dynamic stress of blade have the rising trend of reciprocating oscillation. At the end of acceleration, the stress and strain appear as transient peak values and the transient effect is nonignorable. The starting acceleration has a great impact on the deformation and dynamic stress of blade, and the maximum deformation near the rim of impeller outlet edge increases 5 per cent above the stable condition. The maximum stress value increases by about 68.7 per cent more than the steady-state condition at the impeller outlet edge near the hub. The quick change of rotating speed makes the vibration problem around the blade tip area more serious, and then it takes the excessive stress concentration and destruction at the blade root.
Originality/value
This study provides basis and reference for the safety operation of pumps during starting period
Details
Keywords
Ming-min Liu, L.Z. Li and Jun Zhang
The purpose of this paper is to discuss a data interpolation method of curved surfaces from the point of dimension reduction and manifold learning.
Abstract
Purpose
The purpose of this paper is to discuss a data interpolation method of curved surfaces from the point of dimension reduction and manifold learning.
Design/methodology/approach
Instead of transmitting data of curved surfaces in 3D space directly, the method transmits data by unfolding 3D curved surfaces into 2D planes by manifold learning algorithms. The similarity between surface unfolding and manifold learning is discussed. Projection ability of several manifold learning algorithms is investigated to unfold curved surface. The algorithms’ efficiency and their influences on the accuracy of data transmission are investigated by three examples.
Findings
It is found that the data interpolations using manifold learning algorithms LLE, HLLE and LTSA are efficient and accurate.
Originality/value
The method can improve the accuracies of coupling data interpolation and fluid-structure interaction simulation involving curved surfaces.