Search results

1 – 10 of over 1000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 9 August 2023

Paolo Barbieri, Brice Dattée and Santosh K. Mahapatra

This paper aims to examine how collaborative supplier development (SD) activities, supplier capabilities and buyer–supplier relationship interrelate in technology-based, luxury…

422

Abstract

Purpose

This paper aims to examine how collaborative supplier development (SD) activities, supplier capabilities and buyer–supplier relationship interrelate in technology-based, luxury product business contexts characterized by small volumes, difficult targets and resource constraints relative to those targets.

Design/methodology/approach

Using inductive case research method, the authors investigate multiple embedded cases involving six dyadic buyer–supplier relationships of two luxury product manufacturers in the motorcycle and automotive industries. Each dyad represents an important sub-system for which the buying firm committed significant SD efforts to help the supplier successfully achieve difficult targets.

Findings

The analysis reveals how paradoxical tensions might emerge as the firms engage in successful SD activities, which could lead to decreasing relationship commitment ultimately resulting in the termination of the relationship. The authors utilize the “value co-creation and value capture” paradox framework to understand the SD and relationship dynamic and characterize it as developing-leveraging paradox to explain its dualities, i.e. commitment-based SD efforts (increasing value co-creation), and unilateral leveraging of the newly acquired capabilities (increasing value capture) by both the buyer and the supplier. Overemphasis on value capture by one of the exchange partners spurs a detrimental vicious cycle leading to the decline of the relationship.

Research limitations/implications

The study explains the paradoxical dynamics that may emerge in SD activities of innovative, technologically complex, luxury product firms. The findings contribute to the SD literature by highlighting how learnings from SD activities could contribute to the dark sides of buyer–supplier relationship. The technologically complex, luxury product contextual characteristics of the study may limit the generalizability of the study findings.

Originality/value

The study provides novel insights into the emergence and management of paradoxes in buyer–supplier relationships, in terms of virtuous and vicious dynamics of developing-leveraging.

Details

International Journal of Operations & Production Management, vol. 43 no. 11
Type: Research Article
ISSN: 0144-3577

Keywords

Access Restricted. View access options
Article
Publication date: 14 May 2019

Mehdi Zare and Sadegh Sadeghi

This study aims to perform a comprehensive investigation to model the thermal characteristics of a coupled conduction-radiation heat transfer in a two-dimensional irregular…

108

Abstract

Purpose

This study aims to perform a comprehensive investigation to model the thermal characteristics of a coupled conduction-radiation heat transfer in a two-dimensional irregular enclosure including a triangular-shaped heat source.

Design/methodology/approach

For this purpose, a promising hybrid technique based on the concepts of blocked-off method, FVM and DOM is developed. The enclosure consists of several horizontal, vertical and oblique walls, and thermal conductivity within the enclosure varies directly with temperature and indirectly with position. To simplify the complex geometry, a promising mathematical model is introduced using blocked-off method. Emitting, absorbing and non-isotropic scattering gray are assumed as the main radiative characteristics of the steady medium.

Findings

DOM and FVM are, respectively, applied for solving radiative transfer equation (RTE) and the energy equation, which includes conduction, radiation and heat source terms. The temperature and heat flux distributions are calculated inside the enclosure. For validation, results are compared with previous data reported in the literature under the same conditions. Results and comparisons show that this approach is highly efficient and reliable for complex geometries with coupled conduction-radiation heat transfer. Finally, the effects of thermo-radiative parameters including surface emissivity, extinction coefficient, scattering albedo, asymmetry factor and conduction-radiation parameter on temperature and heat flux distributions are studied.

Originality/value

In this paper, a hybrid numerical method is used to analyze coupled conduction-radiation heat transfer in an irregular geometry. Varying thermal conductivity is included in this analysis. By applying the method, results obtained for temperature and heat flux distributions are presented and also validated by the data provided by several previous papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 20 October 2023

Ajay Kumar Jaiswal and Pallab Sinha Mahapatra

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer…

124

Abstract

Purpose

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer analysis of a novel approach to mini-channel embedded film-cooled flat plate.

Design/methodology/approach

Numerical simulations were performed at a steady state using SST kω turbulence model. Impingement and film cooling are classical approaches generally adopted for turbine blade analysis. The existing film cooling techniques were compared with the proposed design, where a mini-channel was constructed inside the solid plate. The impact of the blowing ratio (M), Biot number (Bi) and temperature ratio (TR) on overall cooling performance was also studied.

Findings

Overall cooling effectiveness was always shown to be higher for mini-channel embedded film-cooled plates. The effectiveness increases with increasing the blowing ratio from M = 0.3 to 0.7, then decreases with increasing blowing ratio (M = 1 and 1.4) due to lift-off conditions. The mini-channel embedded plate resulted in an approximately 21% increase in area-weighted average overall effectiveness at a blowing ratio of 0.7 and Bi = 1.605. The lower uniform temperature was also found for all blowing ratios at a low Biot number, where conduction heat transfer significantly impacts total cooling effectiveness.

Originality/value

To the best of the authors’ knowledge, this study presents a novel approach to improve the cooling performances of a film-cooled flat plate with better cooling uniformity by using embedded mini-channels. Despite the widespread application of microchannels and mini-channels in thermal and fluid flow analysis, the application of mini-channels for blade cooling is not explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 11 October 2018

Soroush Sadripour

In this study, the effects of using corrugated absorber plate (instead of flat plate) and also using aerosol/carbon-black nanofluid (instead of air) on heat transfer and turbulent…

194

Abstract

Purpose

In this study, the effects of using corrugated absorber plate (instead of flat plate) and also using aerosol/carbon-black nanofluid (instead of air) on heat transfer and turbulent flow characteristics in solar collectors were numerically investigated.

Design/methodology/approach

The 3D continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. As a result, the corrugated absorber plate was inspected in the case of triangle, rectangle and sinuous with the wave length of 1 mm and wave amplitude of 3 mm in turbulent flow regime and Reynolds number between 2,500 and 4,000. Choosing the proper geometry was carried out based on the best performance evaluation criteria (PEC) and increasing the air temperature from collector inlet to outlet.

Findings

The results revealed that for all times of the year the highest PEC was obtained for corrugated Sinusoidal model; however, the highest temperature increase from inlet to outlet was obtained for rectangular corrugated model. In addition, the results indicated that in sinusoidal model, the nanoparticles volume fractions increase leads to heat performance coefficient increase and the best heat performance conditions were attained in volume fraction of 0.1 per cent and Reynolds number of 4,000 for both six months period. In model with rectangular corrugated plate, usage of nanofluid in all range of Reynolds numbers leads to reduction of outlet temperature.

Originality/value

The effect of some nanoparticles on heat transfer using thermal– hydraulic performances in heat exchangers has been assessed, but the effects of atmospheric aerosol-based nanofluid using carbon-black nanoparticles (CBNPs) on the heat transfer in corrugated heat sink solar collectors by 3D numerical modeling has not been yet investigated. In present study, usage of CBNPs with different volume fractions in range of 0 to 0.1 per cent in turbulent regime of fluid flow is analyzed. Furthermore, in this paper, besides the effects of using CBNPs, a solar absorber located in Shiraz, as one of the best solar irradiation receiver cities in Iran is evaluated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 2014

Sofen K. Jena, Swarup K. Mahapatra and Amitava Sarkar

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a…

188

Abstract

Purpose

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a tilted enclosure under an externally imposed time-independent uniform magnetic field.

Design/methodology/approach

The differentially heated boundaries of the tilted enclosure are considered to be diffuse, gray and the enclosed fluid is assumed to be absorbing, emitting and isotropically scattering. The Navier-Stokes equations, meant for magneto convection are solved using modified MAC method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation, is used to model radiative transport equation in the presence of radiatively active medium.

Findings

Effect of uniform magnetic field with different magnitudes and orientations of cavity has been numerically simulated. The effect of participating media radiation has been investigated for different optical thicknesses, emissivities, scattering albedos and Planks number. The results are provided in both graphical and tabular forms. The flow lines, isotherms bring clarity in the understanding of flow behaviour and heat transfer characteristics.

Originality/value

Despite the idealized nature, the present study is quite essential to understand the cumbersome physics of realistic problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 14 September 2012

H. Amiri, S.H. Mansouri and P.J. Coelho

The solution of radiative heat transfer problems in participating media is often obtained using the standard discrete ordinates method (SDOM). This method produces anomalies…

514

Abstract

Purpose

The solution of radiative heat transfer problems in participating media is often obtained using the standard discrete ordinates method (SDOM). This method produces anomalies caused by ray effects if radiative boundary conditions have discontinuities or abrupt changes. Ray effects may be mitigated using the modified discrete ordinates method (MDOM), which is based on superposition of the solutions obtained by considering separately radiation from the walls and radiation from the medium. The purpose of this paper is to study the role of ray effects in combined conduction‐radiation problems and investigate the superiority of the MDOM over SDOM.

Design/methodology/approach

The MDOM has been used to calculate radiative heat transfer in irregular geometries using body‐fitted coordinates. Here, the blocked‐off region concept, originally developed in computational fluid dynamics, is used along with the finite volume method and SDOM or MDOM to solve combined conduction‐radiation heat transport problems in irregular geometries. Enclosures with an absorbing, emitting and isotropically or anisotropically scattering medium are analyzed.

Findings

The results confirm the capability of the MDOM to minimize the anomalies due to ray effects in combined heat transfer problems, and demonstrate that MDOM is more computationally efficient than SDOM.

Originality/value

The paper demonstrates the application of MDOM to combined conduction‐radiation heat transfer problems in irregular geometries using blocked‐off method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 27 September 2021

Soroosh Saghiri and Vahid Mirzabeiki

This paper aims to explore how omni-channel data flows should be integrated by specifying what data, omni-channel agents and information and digital technologies (IDTs) should be…

3066

Abstract

Purpose

This paper aims to explore how omni-channel data flows should be integrated by specifying what data, omni-channel agents and information and digital technologies (IDTs) should be considered and connected.

Design/methodology/approach

A multiple case study method is used with 17 British companies. The studies are supported by 68 interviews with the case companies and their consumers, 5 site visits, 4 focus group meetings and the companies’ archival data and documentations.

Findings

This paper provides novel frameworks for omni-channel data flow integration from consumer and business perspectives. The frameworks consist of omni-channel agents, their data transactions and their supporting IDTs. Relatedly, this paper formalizes the omni-channel data flow integration in the forms of horizontal, vertical and total integrations and explores their contributions to the adaptability of omni-channel, as a complex adaptive system (CAS). It also discusses that how inter-organizational governance mechanisms can support data flow integration and their relevant IDT implementations.

Research limitations/implications

The breadth and depth of the required IDTs for omni-channel integration prove the necessity for omni-channel systems to move toward total integration. Therefore, supported by CAS and inter-organizational governance theories, this research indicates how data flow integration and IDT can transform the omni-channel through self-organization and autonomy capability enhancement.

Originality/value

This research’s recommended frameworks provide a robust platform to formalize data flow integration as the omni-channel's core driver. Accordingly, it moves the literature from a basic description of “what omni-channel is” and provides a novel and significant debate on what specific data should be shared at what levels between which agents of the omni-channel, and with what type of relationship governance mechanism, to assure omni-channel horizontal, vertical and total integrations.

Details

International Journal of Operations & Production Management, vol. 41 no. 11
Type: Research Article
ISSN: 0144-3577

Keywords

Access Restricted. View access options
Article
Publication date: 6 March 2017

C.V. Sunil Kumar and Srikanta Routroy

The purpose of this paper is to provide an approach that a manufacturer can periodically use to measure the performances of its supplier development programs (SDPs). It also…

1462

Abstract

Purpose

The purpose of this paper is to provide an approach that a manufacturer can periodically use to measure the performances of its supplier development programs (SDPs). It also quantifies and indicates the specific supplier development outcomes (SDOs) that a manufacturer has to concentrate in improving its SDPs.

Design/methodology/approach

The proposed methodology integrates fuzzy analytic hierarchy process (to determine the importance of SDOs), Pareto analysis (to choose the significant SDOs) and fuzzy logic (to periodically determine the performance indices and grades of the SDPs) methods to measure the performances of SDPs. In order to demonstrate the utility of the methodology, a case situation is presented where the performance measures of SDPs running at five key suppliers of an Indian turbine manufacturing company were determined.

Findings

By periodically applying the above mentioned methodology, the performance indices of a manufacturer’s SDPs are measured, monitored and managed effectively. It is shown that the methodology is advantageous in clearly indicating the scope of improvement for the SDPs along the specific SDOs.

Research limitations/implications

Since the obtained results in this study are specific to a manufacturing environment, they may not be generalized. However, the generic lists of SDOs mentioned in the paper and the proposed approach can be used in any manufacturing environment for analyzing the performances of SDPs.

Practical implications

The performance analysis of SDPs would help a manufacturer to know more about the functioning of its SDPs along the timeline and provide the scope for improvement.

Originality/value

The proposed approach successfully measures and also grades the performances of SDPs. The results enable the supplier development managers to effectively distribute their investments and efforts along the SDPs.

Access Restricted. View access options
Article
Publication date: 28 August 2023

Shekhar Sharma, Saurav Datta, Tarapada Roy and Siba Sankar Mahapatra

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based…

84

Abstract

Purpose

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.

Design/methodology/approach

Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.

Findings

Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.

Originality/value

FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 8 June 2015

Zhi Cao, Baofeng Huo, Yuan Li and Xiande Zhao

– The purpose of this paper is to investigate the influence of competition on supply chain integration (SCI).

1227

Abstract

Purpose

The purpose of this paper is to investigate the influence of competition on supply chain integration (SCI).

Design/methodology/approach

Survey data from 617 manufacturers in China were used in this study. Taxonomy with cluster analysis was used to investigate the patterns of competition, and analysis of variance (ANOVA) was used to investigate the influence of these competition patterns on SCI.

Findings

Seven competition patterns composed of local competition, international competition, and operational challenges were identified from the survey data. The ANOVA results showed that companies with different patterns achieved significantly different levels of SCI, indicating that higher levels of local competition, international competition, and operational challenges drove higher levels of SCI. Post hoc analyses revealed that international competition had stronger effects than local competition on SCI.

Research limitations/implications

The data were collected from a single country, which may limit the generalization of the findings. The data were cross-sectional and thus lacked causal explanatory power.

Practical implications

The findings provide suggestions for managers to use different configurations of SCI to adapt to different patterns of competition.

Originality/value

This study makes three main contributions to the literature. First, it extends the research on the relationship between competition and cooperation to the supply chain management area. Second, it extends the concept of competition by incorporating not only competitive intensity, but also competitive scope and competitive capability. Third, the use of a configuration approach rather than a dimensional approach to investigate the effects of competition on SCI solves many methodological problems.

Details

Industrial Management & Data Systems, vol. 115 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 1000
Per page
102050