Search results

1 – 7 of 7
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 8 October 2019

Manjunatha Gudekote, Rajashekhar Choudhari, Hanumesh Vaidya, Prasad K.V. and Viharika J.U.

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects…

42

Abstract

Purpose

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.

Design/methodology/approach

The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.

Findings

The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.

Originality/value

The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 20 September 2018

Hanumesh Vaidya, Manjunatha Gudekote, Rajashekhar Choudhari and Prasad K.V.

This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the…

86

Abstract

Purpose

This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the Herschel-Bulkley fluid are considered. The impacts of relevant parameters on flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids. The paper aims to discuss these issues.

Design/methodology/approach

The administering equations are solved utilizing long wavelength and low Reynolds number approximations, and exact solutions are acquired for velocity, temperature, flux and stream functions.

Findings

It is seen that the flow rate in a Newtonian fluid is high when contrasted with the Herschel-Bulkley model, and the inlet elastic radius and outlet elastic radius have opposite effects on the flow rate.

Originality/value

The analysis carried out in this paper is about the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impact of slip and heat transfer on a Herschel-Bulkley fluid is taken into account. The impacts of relevant parameters on the flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 22 March 2019

Anu P. Anil and Satish K.P.

Total quality management practices have been embraced by many quality-oriented firms around the world in order to improve performance in terms of quality, productivity, customer…

3617

Abstract

Purpose

Total quality management practices have been embraced by many quality-oriented firms around the world in order to improve performance in terms of quality, productivity, customer satisfaction and profitability. The purpose of this paper is to investigate the direct and indirect effects of TQM practices on various performance indicators specifically in the Indian manufacturing context. This paper focuses on developing an integrated model encompassing significant structural relations showing the linkage between TQM practices and multiple performance indicators – quality performance, customer satisfaction level, operating performance, employee performance, innovation performance, society results and financial performance. Apart from analyzing the direct relationship between constructs, the main purpose of this work is also to identify all the possible mediation effects of performance indicators on others using structural equation modeling (SEM).

Design/methodology/approach

An in-depth literature review was conducted to identify the key practices for the successful implementation of TQM in an organization as well as to explore TQM-performance effects. As a result, four TQM practices and seven performance indicators were identified. The data were collected from 260 Indian manufacturing organizations. After confirming the reliability and validity using exploratory and confirmatory factor analysis, the proposed hypotheses were tested using SEM.

Findings

Through testing the proposed hypothesized structural model, the direct and indirect effects of TQM practices have been examined. Moreover, this work developed an integrated model showing the interrelationships between TQM practices and performance indicators identified. The findings gave an insight that the effective implementation of TQM practices assists in reaping benefits in the every facet of an organization. By implementing these practices effectively, managers can expect to realize improvement in all these performance areas.

Research limitations/implications

This study is subject to certain limitations. Even if all variables were found to be reliable, valid and satisfactory non-response bias test results, the remote possibility of bias in the data might not be fully ruled out. There is a probability of occurrence of common method variance and common method bias, since the data for both dependent and independent variables were collected from the same respondents in the organization. Additionally data on performance indicators were based on the respondent’s assessment and awareness only. The mediating relationship between individual TQM practice and performance indicators can be investigated in future studies. Since society results are a necessity in future, the direct and indirect practices focusing toward this can be explored. In addition, there is a research scope to identify the moderating effect of contextual factors such as degree of TQM implementation, scope of operation and type of organization.

Practical implications

The findings of the research offer some potentially valuable insights into the relevance of TQM practices and its strong linkage on various performance indicators, through which the overall organization performance can be enhanced. By implementing these practices effectively, managers can expect to realize improvement in all these performance areas. Hence, the managers can adopt this approach to assess their organization’s level in the quality path and as a guideline in implementing TQM practices. They can also measure the impacts of TQM practices on multiple performance measures in order to evaluate their TQM initiatives. Especially the deployment of quality culture is a requisite to excel in the every facet of performance. The positive relationship between TQM practices and various performance indicators can motivate the managers to allocate resources in time, effort and capital for TQM implementation in pursuing quality, leading to customer retention and competitiveness. The findings of the study strongly suggest the need for the holistic implementation of TQM practices for the survival of the organization.

Originality/value

While there is a considerable volume of researches carried out to investigate the linkage between TQM and organization’s performance across the globe, still little is evidenced regarding the mediating effect of performance indicators on others, especially in the Indian manufacturing context. The present paper attempts to extend and add knowledge to this line of research and to bridge the gap and provide sufficient empirical evidence specifically in the Indian scenario. Thereby helps the organization to follow a guideline to improve the overall performance.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Access Restricted. View access options
Article
Publication date: 6 September 2021

Souad Marzougui, Fateh Mebarek-Oudina, Mourad Magherbi and Ali Mchirgui

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid…

285

Abstract

Purpose

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid saturated lid-driven porous medium.

Design/methodology/approach

The present paper highlights entropy generation because of mixed convection for a lid-driven porous enclosure filled through a nanoliquid and submitted to a uniform magnetic field. The analysis is achieved using Darcy–Brinkman–Forchheimer technique. The set of partial differential equations governing the considered system was numerically solved using the finite element method.

Findings

The main observations are as follows. The results indicate that the movement of horizontal wall is an important factor for the entropy generation inside the porous cavity filled through Cu–water nanoliquid. The variation of the thermal entropy generation is linear through NPs volume fraction. The total entropy generation reduces when the Darcy, Hartmann and the nanoparticle volume fraction increase. The porous media and magnetic field effects reduce the total entropy generation.

Practical implications

Interest in studying thermal interactions by convective flow within a saturating porous medium has many fundamental considerations and has received extensive consideration in the literature because of its usefulness in a large variety of engineering applications, such as the energy storage and solar collectors, crystal growth, food processing, nuclear reactors and cooling of electronic devices, etc.

Originality/value

By examining the literature, the authors found that little attention has been paid to entropy generation encountered during convection of nanofluids. Hence, this work aims to numerically study entropy generation and heat transport in a lid-driven porous enclosure filled with a nanoliquid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 29 May 2023

Jawad Raza, Mohsin Raza, Tahir Mustaq and Muhammad Imran Qureshi

The purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.

73

Abstract

Purpose

The purpose of this paper is to study the thermal behavior of radial porous fin surrounded by water-base copper nanoparticles under the influence of radiation.

Design/methodology/approach

In order to optimize the response variable, the authors perform sensitivity analysis with the aid of response surface methodology (RSM). Moreover, this study enlightens the applications of artificial neural networks (ANN) for predicting the temperature gradient. The governing modeled equations are firstly non-dimensionalized and then solved with the aid of Runge–Kutta fourth order together with the shooting method in order to guess the initial conditions.

Findings

Numerical results are analyzed and presented in the form of tables and graphs. This study reveals that the temperature of the fin is decreasing as the wet porous parameter increases (m2) and the temperature for 10% concentration of nanoparticles are higher than 5 and 1%. Physical parameters involved in the study are analyzed and processed through RSM. It is come to know that sensitivity of temperature gradient to radiative parameter (Nr) and convective parameter (Nc) is positive and negative to dimensionless ambient temperature (θa). Furthermore, after ANN training it can be argued that the established model can efficiently be used to predict the temperature gradient over a radial porous fin for the copper-water nanofluid flow.

Originality/value

To the best of our knowledge, only a few attempts have been made to analyze the thermal behavior of radial porous fin surrounded by copper-based nanofluid under the influence of radiation and convection.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 22 June 2020

Naveed Imran, Maryiam Javed, Muhammad Sohail, S. Farooq and Mubashir Qayyum

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage…

76

Abstract

Purpose

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage of non-Newtonian fluid rheological properties enhancing, damping tools, protection apparatus individuals and in various distinct mechanical procedures. Industrial applications of non-Newtonian liquids include minimum friction, reduction in oil-pipeline friction, scale-up, flow tracers and in several others. The peristaltic mechanism is used as a non-Newtonian material carrier here. This mechanism occurs because of continuous symmetrical and asymmetrical propulsion of smooth channel walls. Peristalsis is a very significant mechanism for carrying drugs and other materials during sensitive diseases treatments.

Design/methodology/approach

Keeping in mind the considered problem assumptions (Rabinowitsch fluid model, thermal Grashof number, Prandtl number, density Grashof number, wall properties, etc.), it is found that the modeled equations are coupled and nonlinear. Thus here, analytical results are quite challenging to acquire and very limited to extremely venerated circumstances unsettled to their nonlinearity. Hence various developments found in computing proficiencies, numerical procedures that provides accurate, stable and satisfying solutions for non-Newtonian material flows exclusively in complex dimensions play a significant role. Here BVP4C numerical technique is developed to evaluate the nonlinear coupled system of equations with appropriate boundary constraints.

Findings

Due to convectively heated surface fluid between the walls having a small temperature. Sherwood and Nusselt numbers both deduce for fixed radiation values and different Rabinowitsch fluid quantity. Skin friction is maximum in the case of Newtonian, while minimum in case of dilatant model and pseudoplastic models. The influence of numerous parameters associated with flow problems such as thermal Grashof number, density Grashof number, Hartman number, Brownian motion, thermophoresis motion factor and slip parameters are also explored in detail and plotted for concentration profile, temperature distribution and velocity. From this analysis, it is concluded that velocity escalates for larger

Originality/value

The work reported in this manuscript has not been investigated so far by any researcher.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 6 May 2020

S. Das, R.R. Patra and R.N. Jana

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically…

63

Abstract

Purpose

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.

Findings

Results reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.

Originality/value

Till now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 7 of 7
Per page
102050