Search results

1 – 10 of 19
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 15 August 2022

Jie Wu, Qingsong Liu and Zhixiang Zhou

The purpose of this study is to evaluate the profit efficiency of decision-making units (DMUs) based on predicted future information to solve the lag problem of improvement…

153

Abstract

Purpose

The purpose of this study is to evaluate the profit efficiency of decision-making units (DMUs) based on predicted future information to solve the lag problem of improvement benchmarks given by the traditional profit efficiency model.

Design/methodology/approach

This paper proposes a two-step profit efficiency evaluation method. The first step predicts the future input and output information of DMUs through the past time-series data, obtaining a likely production possibility set (PPS) and profit frontier for the next period. The second step calculates DMUs' profit efficiency based on the predictions obtained in the first step and provides predictive benchmarking for DMUs.

Findings

The empirical results show that the proposed method yields good solutions for the lag problem of benchmarks given in ex-post evaluation, enabling bank managers to use predicted future information to achieve better improvement. Besides, compared with the technical efficiency measure, profit efficiency can better reflect the financial situation of DMUs and give the specific gap between the evaluated and optimal DMU.

Practical implications

For bank managers, the authors' new technique is advantageous for grasping the initiative of development because this technique accounts for the future development of the whole industry and sets forward-looking targets. These advantages can help banks improve in a more favorable direction and improve the asset management ability of banks.

Originality/value

This paper combines the data envelopment analysis (DEA) profit efficiency model with performance prediction and proposes a new two-step profit efficiency model, filling a gap in previous studies.

Details

Kybernetes, vol. 52 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options
Article
Publication date: 13 June 2024

Xing Li, Guiyang Zhang, Fangyuan Zheng, Yong Qi and Chang Lu

Well-constructed transportation infrastructure may effectively decrease barriers to the flow of innovative human resources and inventive elements, accelerating enterprise…

143

Abstract

Purpose

Well-constructed transportation infrastructure may effectively decrease barriers to the flow of innovative human resources and inventive elements, accelerating enterprise innovation activities. This study will explore how HSR helps enterprises achieve ambidextrous innovation, including the mediating mechanism of absorbed slack resources, innovative talents, and the heterogeneous effects of management shareholding ratio and financing constraints.

Design/methodology/approach

Based on resource dependence theory and social network theory, this study employs a quasi-natural experiment of China’s high-speed railway and builds a multi-time point DID model to investigate its influence on enterprise ambidextrous innovation.

Findings

Results suggest that the HSR positively influences both exploitative and exploratory innovation, and the influence is more substantial on exploitative innovation. Further analysis finds two influencing channels through which HSR influences enterprise ambidextrous innovation: providing redundant resources and attracting innovative talents. Heterogeneity analysis indicates that HSR has a more significant positive effect on exploratory innovation for enterprises with high management shareholding. In the low financing constraint group, the HSR opening has a more significant impact on ambidextrous innovation.

Practical implications

In ambidextrous innovation, enterprises should rationalize the allocation of resources, attach importance to the innovative talent introduction, and choose differentiated paths based on intrinsic characteristics. Meanwhile, the government should actively improve the HSR routes and continuously improve the innovative environment.

Originality/value

This study enriches the theoretical research framework of HSR and ambidextrous innovation by identifying the channel mechanisms and boundary conditions through which HSR affects ambidextrous innovation and expands the consequences of HSR and the antecedents of ambidextrous.

Details

Business Process Management Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1463-7154

Keywords

Access Restricted. View access options
Article
Publication date: 19 July 2019

Yanxin Zheng, Ying Liu, Feng Zheng, Qingsong Song, Caili Zhang, Jian Wang, Nan Dong, Aijuan Shi and Peide Han

The purpose of this study is to investigate the effect of iron content on the friction and wear performances of Cu–Fe-based friction materials under dry sliding friction and wear…

385

Abstract

Purpose

The purpose of this study is to investigate the effect of iron content on the friction and wear performances of Cu–Fe-based friction materials under dry sliding friction and wear test condition.

Design/methodology/approach

Cu–Fe-based friction materials with different iron content were prepared by powder metallurgy route. The tribological properties of Cu–Fe-based friction materials against GCr15 steel balls were studied at different applied loads and sliding speeds. Meanwhile, microstructure and phases of Cu–Fe-based friction materials were investigated.

Findings

Cu–Fe-based friction materials with different iron content are suitable for specific applied load and sliding speed, respectively. Low iron content Cu–Fe-based friction material is suitable for a high load 60 N and low sliding speed 70 mm/min and high iron content Cu–Fe-based friction material will be more suitable for a high load 60 N and high sliding speed 150 mm/min. The abrasive wear is the main wear mechanism for two kinds of Cu–Fe-based friction materials.

Originality/value

The friction and wear properties of Cu–Fe-based friction materials with different iron content were determined at different applied loads and sliding speeds, providing a direction and theoretical basis for the future development of Cu–Fe-based friction materials.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 16 January 2017

Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei and Yusheng Shi

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines…

1154

Abstract

Purpose

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines the mechanical property of porous scaffolds. Therefore, the purpose of this paper is to evaluate the effects of unit cell topology on the compression properties of porous Cobalt–chromium (Co-Cr) scaffolds fabricated by SLM using finite element (FE) and experimental measurement methods.

Design/methodology/approach

The Co-Cr alloy porous scaffolds constructed in four different topologies, i.e. cubic close packed (CCP), face-centered cubic (FCC), body-centered cubic (BCC) and spherical hollow cubic (SHC), were designed and fabricated via SLM process. FE simulations and compression tests were performed to evaluate the effects of unit cell topology on the compression properties of SLM-processed porous scaffolds.

Findings

The Mises stress predicted by FE simulations showed that different unit cell topologies resulted in distinct stress distributions on the bearing struts of scaffolds, whereas the unit cell size directly determined the stress value. Comparisons on the stress results for four topologies showed that the FCC unit cell has the minimum stress concentration due to its inclined bearing struts and horizontal arms. Simulations and experiments both indicated that the compression modulus and strengths of FCC, BCC, SHC, CCP scaffolds with the same cell size presented in a descending order. These distinct compression behaviors were correlated with the corresponding mechanics response on bearing struts. Two failure mechanisms, cracking and collapse, were found through the results of compression tests, and the influence of topological designs on the failure was analyzed and discussed. Finally, the cell initial response of the SLM-processed Co-Cr scaffold was tested through the in vitro cell culture experiment.

Originality/value

A focus and concern on the compression properties of SLM-processed porous scaffolds was presented from a new perspective of unit cell topology. It provides some new knowledge to the structure optimization of porous scaffolds for load-bearing bone implants.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 5 February 2018

Erming Ding, Fangwei Xie, Heng Dai, Qingsong Gao, Jin Zhang, Yixian Feng and Hongtuo Liu

In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to…

206

Abstract

Purpose

In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to validate its modeling and characteristics, indicator diagrams and velocity diagrams, which are the main research points.

Design/methodology/approach

In order to validate the fluid flow modeling, a series of mathematical modeling is established and solved by using Matlab/Simulink. An experiment rig based on electro-hydraulic loading servo system is designed to test the prototype. Finally, indicator diagram and velocity diagram are obtained and compared both in simulation and experiments.

Findings

Results indicate that at the same damping position, damping force will increase with the rise of rod’s velocity: if the rod’s velocity is fixed, the damping force changes apparently by altering the damping position. The shock absorber is softest at damping position 1, and it is hardest at damping position 4; although there is no any badly empty stroke and skewness in indicator diagram by simulation, a temporary empty stroke happens at maximum displacement of piston rob, both in rebound and compression strokes.

Research limitations/implications

Compared with results of the simulation and experiments, the design of a four-stage damping adjustable shock absorber (FDASA) is validated correctly in application, and may improve the overall dynamic performance of vehicle.

Originality/value

This paper is mainly focused on the design and testing of an FDASA, which may obtain four-stages damping characteristics, that totally has a vital importance to improve the performance of vehicle suspension.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Available. Open Access. Open Access
Article
Publication date: 4 August 2022

Yan Yu, Qingsong Tian and Fengxian Yan

Fewer researchers have investigated the climatic and economic drivers of land-use change simultaneously and the interplay between drivers. This paper aims to investigate the…

1001

Abstract

Purpose

Fewer researchers have investigated the climatic and economic drivers of land-use change simultaneously and the interplay between drivers. This paper aims to investigate the nonlinear and interaction effects of price and climate variables on the rice acreage in high-latitude regions of China.

Design/methodology/approach

This study applies a multivariate adaptive regression spline to characterize the effects of price and climate expectations on rice acreage in high-latitude regions of China from 1992 to 2017. Then, yield expectation is added into the model to investigate the mechanism of climate effects on rice area allocation.

Findings

The results of importance assessment suggest that rice price, climate and total agricultural area play an important role in rice area allocation, and the importance of temperature is always higher than that of precipitation, especially for minimum temperature. Based on the estimated hinge functions and coefficients, it is found that total agricultural area has strong nonlinear and interaction effects with climate and price as forms of third-order interaction. However, the order of interaction terms reduces to second order after absorbing the expected yield. Additionally, the marginal effects of driven factors are calculated at different quantiles. The total area shows a positive and increasing marginal effect with the increase of total area. But the positive impact of price on the rice area can only be observed when price reached 50% or higher quantiles. Climate variables also show strong nonlinear marginal effects, and most climatic effects would disappear or be weakened once absorbing the expected rice yield. Expected yield is an efficient mechanism to explain the correlation between crop area and climate variables, but the impact of minimum temperature cannot be completely modeled by the yield expectation.

Originality/value

To the best of the authors’ knowledge, this is the first study to examine the nonlinear response of land-use change to climate and economic in high-latitude regions of China using the machine learning method.

Details

International Journal of Climate Change Strategies and Management, vol. 14 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Access Restricted. View access options
Article
Publication date: 5 November 2019

Yilin Zhang, Zhenyu Cheng and Qingsong He

For the developing countries involving in the Belt and Road Initiative (BRI) with China as the main source of foreign development investment (FDI) and development as the top…

981

Abstract

Purpose

For the developing countries involving in the Belt and Road Initiative (BRI) with China as the main source of foreign development investment (FDI) and development as the top priority, it appears to attract more and more attention on how to make the best use of China’s outward foreign development investment. However, the contradictory evidence in the previous studies of FDI spillover effect and the remarkable time-lag feature of spillovers motivate us to analyze the mechanism of FDI spillover effect. The paper aims to discuss this issue.

Design/methodology/approach

The mechanism of FDI spillovers and the unavoidable lag effect in this process are empirically analyzed. Based on the panel data from the Belt and Road developing countries (BRDCs) and China’s direct investments (CDIs) from 2003 to 2017, the authors establish a panel vector autoregressive model, employing impulse response function and variance decomposition analysis, together with Granger causality test.

Findings

Results suggest a dynamic interactive causality mechanism. First, CDI promotes the economic growth of BRDCs through technical efficiency, human capital and institutional transition with combined lags of five, nine and eight years. Second, improvements in the technical efficiency and institutional quality promote economic growth by facilitating the human capital with integrated delays of six and eight years. Third, China’s investment directly affects the economic growth of BRDCs, with a time lag of six years. The average time lag is about eight years.

Originality/value

Based on the analysis on the mechanism and time lag of FDI spillovers, the authors have shown that many previous articles using one-year lagged FDI to examine the spillover effect have systematic biases, which contributes to the research on the FDI spillover mechanism. It provides new views for host countries on how to make more effective use of FDI, especially for BRDCs using CDIs.

Details

International Journal of Emerging Markets, vol. 15 no. 4
Type: Research Article
ISSN: 1746-8809

Keywords

Access Restricted. View access options
Article
Publication date: 12 August 2014

Wei Meng, Quan Liu, Zude Zhou and Qingsong Ai

The purpose of this paper is to propose a seamless active interaction control method integrating electromyography (EMG)-triggered assistance and the adaptive impedance control…

875

Abstract

Purpose

The purpose of this paper is to propose a seamless active interaction control method integrating electromyography (EMG)-triggered assistance and the adaptive impedance control scheme for parallel robot-assisted lower limb rehabilitation and training.

Design/methodology/approach

An active interaction control strategy based on EMG motion recognition and adaptive impedance model is implemented on a six-degrees of freedom parallel robot for lower limb rehabilitation. The autoregressive coefficients of EMG signals integrating with a support vector machine classifier are utilized to predict the movement intention and trigger the robot assistance. An adaptive impedance controller is adopted to influence the robot velocity during the exercise, and in the meantime, the user’s muscle activity level is evaluated online and the robot impedance is adapted in accordance with the recovery conditions.

Findings

Experiments on healthy subjects demonstrated that the proposed method was able to drive the robot according to the user’s intention, and the robot impedance can be updated with the muscle conditions. Within the movement sessions, there was a distinct increase in the muscle activity levels for all subjects with the active mode in comparison to the EMG-triggered mode.

Originality/value

Both users’ movement intention and voluntary participation are considered, not only triggering the robot when people attempt to move but also changing the robot movement in accordance with user’s efforts. The impedance model here responds directly to velocity changes, and thus allows the exercise along a physiological trajectory. Moreover, the muscle activity level depends on both the normalized EMG signals and the weight coefficients of involved muscles.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 5 February 2018

Kaiyu Dai, Fangwei Xie, Qingsong Gao, Desheng Zhang, Erming Ding and Xinjian Guo

The purpose of this paper is to study the pressure response characteristics of the cartridge electromagnetic relief valve, which offers the problems caused by low pressure…

116

Abstract

Purpose

The purpose of this paper is to study the pressure response characteristics of the cartridge electromagnetic relief valve, which offers the problems caused by low pressure response and low efficiency in hydraulic plate shearing machines.

Design/methodology/approach

First of all the mathematical model of the cartridge electromagnetic relief valve is deduced to analyze the influence of the relevant parameters on the system pressure response. Then experiments are conducted to research the dynamic characteristics on building and relieving pressure. Through comparison of theoretical and experimental research, the results are found.

Findings

The results show that the input flow, working pressure, diameter of adjacent damping hole, and spring stiffness of the main valve have great influence on building pressure of the system, and have no influence on relieving pressure, while diameter of damping hole of control cover plate has influence on the building and relieving pressure of the system.

Originality/value

The research results provide powerful theoretical support for the parametric design of the cartridge electromagnetic relief valve in the hydraulic system of plate shearing machine.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 9 September 2014

Xin Ye, Chao Shao, Zhijing Zhang, Jun Gao and Yang Yu

– The purpose of this paper is to design a microgripper that can achieve nondestructive gripping of a miniaturized ultra-thin-walled cylindrical part.

284

Abstract

Purpose

The purpose of this paper is to design a microgripper that can achieve nondestructive gripping of a miniaturized ultra-thin-walled cylindrical part.

Design/methodology/approach

The microgripper is mainly made of an inflatable silica gel gasbag, which can minimize the damage to the part in the gripping process. This paper introduces the design principle of a flexible air-filled microgripper, which is applied in an in-house microassembly system with coaxial alignment function. Its parameters and performance specifications have been obtained by simulation, experiment demarcating. The results show that the microgripper is able to grasp an ultra-thin-walled part non-destructively.

Findings

For the microgripper, finite element simulations and experiments were carried out, and both results indicate that the microgripper can achieve nondestructive gripping of a miniaturized ultra-thin-walled cylindrical part, with good stability, great grasping force and high repeat positioning accuracy.

Originality/value

Gripping the ultra-thin-walled part may lead to deformation and destruction easily. It has been a big bottleneck hindering successful assembly. This article introduces a novel microgripper using an inflatable sac. The work is interesting from an industrial point of view for a specific category of assembly applications. It provides a theoretical guidance and technical support to design a microgripper for a miniaturized ultra-thin-walled part of different sizes.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 19
Per page
102050