Search results
1 – 10 of 238Nzita Alain Lelo, P. Stephan Heyns and Johann Wannenburg
Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP…
Abstract
Purpose
Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP) cooling water system, coming into contact with molten matte. To address such safety issues related to steam explosions, risk based inspection (RBI) is suggested in this paper. RBI is presently one of the best-practice methodologies to provide an inspection schedule and ensure the mechanical integrity of pressure vessels. The application of RBIs on furnace HP cooling systems in this work is performed by incorporating the proportional hazards model (PHM) with the RBI approach; the PHM uses real-time condition data to allow dynamic decision-making on inspection and maintenance planning.
Design/methodology/approach
To accomplish this, a case study is presented that applies an HP cooling system data with moisture and cumulated feed rate as covariates or condition indicators to compute the probability of failure and the consequence of failure (CoF), which is modelled based on the boiling liquid-expanding vapour explosion (BLEVE) theory.
Findings
The benefit of this approach is that the risk assessment introduces real-time condition data in addition to time-based failure information to allow improved dynamic decision-making for inspection and maintenance planning of the HP cooling system. The work presented here comprises the application of the newly proposed methodology in the context of pressure vessels, considering the important challenge of possible explosion accidents due to BLEVE as the CoF calculations.
Research limitations/implications
This paper however aims to optimise the inspection schedule on the HP cooling system, by incorporating PHM into the RBI methodology, as was recently proposed in the literature by Lelo et al. (2022). Moisture and cumulated feed rate are used as covariate. At the end, risk mitigation policy is suggested.
Originality/value
In this paper, the proposed methodology yields a dynamically calculated quantified risk, which emphasised the imperative for mitigating the risk, as well as presents a number of mitigation options, to quantifiably affect such mitigation.
Details
Keywords
Nzita Alain Lelo, P. Stephan Heyns and Johann Wannenburg
Industry decision makers often rely on a risk-based approach to perform inspection and maintenance planning. According to the Risk-Based Inspection and Maintenance Procedure…
Abstract
Purpose
Industry decision makers often rely on a risk-based approach to perform inspection and maintenance planning. According to the Risk-Based Inspection and Maintenance Procedure project for the European industry, risk has two main components: probability of failure (PoF) and consequence of failure (CoF). As one of these risk drivers, a more accurate estimation of the PoF will contribute to a more accurate risk assessment. Current methods to estimate the PoF are either time-based or founded on expert judgement. This paper suggests an approach that incorporates the proportional hazards model (PHM), which is a statistical procedure to estimate the risk of failure for a component subject to condition monitoring, into the risk-based inspection (RBI) methodology, so that the PoF estimation is enhanced to optimize inspection policies.
Design/methodology/approach
To achieve the overall goal of this paper, a case study applying the PHM to determine the PoF for the real-time condition data component is discussed. Due to a lack of published data for risk assessment at this stage of the research, the case study considered here uses failure data obtained from the simple but readily available Intelligent Maintenance Systems bearing data, to illustrate the methodology.
Findings
The benefit of incorporating PHM into the RBI approach is that PHM uses real-time condition data, allowing dynamic decision-making on inspection and maintenance planning. An additional advantage of the PHM is that where traditional techniques might not give an accurate estimation of the remaining useful life to plan inspection, the PHM method has the ability to consider the condition as well as the age of the component.
Research limitations/implications
This paper is proposing the development of an approach to incorporate the PHM into an RBI methodology using bearing data to illustrate the methodology. The CoF estimation is not addressed in this paper.
Originality/value
This paper presents the benefits related to the use of PHM as an approach to optimize the PoF estimation, which drives to the optimal risk assessment, in comparison to the time-based approach.
Details
Keywords
Mohammadreza Salehi, Nader Pourmahmoud, Amir Hassanzadeh, S. Hoseinzadeh and P.S. Heyns
Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field…
Abstract
Purpose
Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field behaviors such as Mach number; pressure; and temperature.
Design/methodology/approach
To investigate the effect of throat diameter, it is simulated for 4, 6, 8 and 10 mm as throat diameters. The governing equations have been solved by standard code of Fluent Software together with a compressible 2 D symmetric and turbulence model with the standard k–ε model. First, the influence of the throat diameter is investigated by keeping the inlet mass flow constant.
Findings
The results show that a place of shock wave creation is changed by changing the throat diameter. The obtained results illustrate that the maximum amount of Mach number is dependent on the throat diameter. It is obtained from the results that for smaller throats higher Mach numbers can be obtained. Therefore, for mixing purposes smaller throats and for exhausting bigger throats seems to be appropriate.
Originality/value
The obtained numerical results are compared to the existing experimental ones which show good agreement.
Details
Keywords
S. Hoseinzadeh, S.M. Taheri Otaghsara, M.H. Zakeri Khatir and P.S. Heyns
The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different…
Abstract
Purpose
The purpose of this study is to investigate the pulsating flow in a three-dimensional channel. Channel flow is laminar and turbulent. After validation, the effect of different channel cross-sectional geometries (circular, hexagonal and triangular) with the pulsating flow are investigated. For this purpose, the alumina nanofluid was considered as a working fluid with different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent).
Design/methodology/approach
In this study, the pulsatile flow was investigated in a three-dimensional channel. Channel flow is laminar and turbulent.
Findings
The results show that the fluid temperature decreases by increasing the volume percentage of particles of Al2O3; this is because of the fact that the input energy through the wall boundary is a constant value and indicates that with increasing the volume percentage, the fluid can save more energy at a constant temperature. And by adding Al2O3 nanofluid, thermal performance improves in channels, but it should be considered that the use of nanofluid causes a pressure drop in the channel.
Originality/value
Alumina/water nanofluid with the pulsating flow was investigated and compared in three different cross-sectional channel geometries (circular, hexagonal and triangular). The effect of different volume percentages (0 per cent [pure water], 3 per cent and 5 per cent) of Al2O3 nanofluid on temperature, velocity and pressure are studied.
Details
Keywords
S. Hoseinzadeh, P.S. Heyns and H. Kariman
The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow…
Abstract
Purpose
The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow range, with increasing Reynolds number (Re), the velocity gradient is increased. Also, the Nusselt number (Nu) is increased, which causes increase in the overall heat transfer rate. Additionally, in the change of flow regime from laminar to turbulent, average thermal flux and pulsation range are increased. Also, the effect of different percentage of Al2O3/water nanofluid is investigated. The results show that the addition of nanofluids improve thermal performance in channel, but the using of nanofluid causes a pressure drop in the channel.
Design/methodology/approach
The pulsatile flow and heat transfer in a two-dimensional channel were investigated.
Findings
The numerical results show that the Al2O3/Water nanofluid has a significant effect on the thermal properties of the different flows (laminar and turbulent) and the average thermal flux and pulsation ranges are increased in the change of flow regime from laminar to turbulent. Also, the addition of nanofluid improves thermal performance in channels.
Originality/value
The originality of this work lies in proposing a numerical analysis of heat transfer of pulsating Al2O3/Water nanofluid flow -with different percentages- in the two-dimensional channel while the flow regime change from laminar to turbulent.
Details
Keywords
T. Barbaryan, S. Hoseinzadeh, P.S. Heyns and M.S. Barbaryan
This study aims to develop a new design for the fluid-safety valve to make it more environmentally friendly.
Abstract
Purpose
This study aims to develop a new design for the fluid-safety valve to make it more environmentally friendly.
Design/methodology/approach
Computational fluid dynamics is carried out to analyse the behaviour of flow in both traditional and new safety valves.
Findings
The possibility of failure in the new design under the maximum allowable working pressure is analysed using finite element analysis.
Originality/value
Investigating a new low-fluid pressure safety valve design.
Details
Keywords
Shiang-Wuu Perng, Horng Wen Wu and De-An Huang
The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.
Abstract
Purpose
The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.
Design/methodology/approach
The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG)
Findings
The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.
Research limitations/implications
The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.
Practical implications
The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.
Originality/value
These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.
Details
Keywords
Mahdi Nazarieh, Hamed Kariman and Siamak Hoseinzadeh
This study aims to simulate Hunter turbine in Computer Forensic Examiner (CFX) environment dynamically. For this purpose, the turbine is designed in desired dimensions and…
Abstract
Purpose
This study aims to simulate Hunter turbine in Computer Forensic Examiner (CFX) environment dynamically. For this purpose, the turbine is designed in desired dimensions and simulated in ANSYS software under a specific fluid flow rate. The obtained values were then compared with previous studies for different values of angles (θ and α). The amount of validation error were obtained.
Design/methodology/approach
In this research, at first, the study of fluid flow and then the examination of that in the tidal turbine and identifying the turbines used for tidal energy extraction are performed. For this purpose, the equations governing flow and turbine are thoroughly investigated, and the computational fluid dynamic simulation is done after numerical modeling of Hunter turbine in a CFX environment.
Findings
The failure results showed; 11.25% for the blades to fully open, 2.5% for blades to start, and 2.2% for blades to close completely. Also, results obtained from three flow coefficients, 0.36, 0.44 and 0.46, are validated by experimental data that were in high-grade agreement, and the failure value coefficients of (0.44 and 0.46) equal (0.013 and 0.014), respectively.
Originality/value
In this research, at first, the geometry of the Hunter turbine is discussed. Then, the model of the turbine is designed with SolidWorks software. An essential feature of SolidWorks software, which was sorely needed in this project, is the possibility of mechanical clamping of the blades. The validation is performed by comparing the results with previous studies to show the simulation accuracy. This research’s overall objective is the dynamical simulation of Hunter turbine with the CFX. The turbine was then designed to desired dimensions and simulated in the ANSYS software at a specified fluid flow rate and verified, which had not been done so far.
Details
Keywords
S. Hoseinzadeh, Ali Sohani, Saman Samiezadeh, H. Kariman and M.H. Ghasemi
This study aim to use the finite volume method to solve differential equations related to three-dimensional simulation of a solar collector. Modeling is done using ANSYS-fluent…
Abstract
Purpose
This study aim to use the finite volume method to solve differential equations related to three-dimensional simulation of a solar collector. Modeling is done using ANSYS-fluent software program. The investigation is done for a photovoltaic (PV) solar cell, with the dimension of 394 × 84 mm2, which is the aluminum type and receives the constant heat flux of 800 W.m−2. Water is also used as the working fluid, and the Reynolds number is 500.
Design/methodology/approach
In the present study, the effect of fluid flow path on the thermal, electrical and fluid flow characteristics of a PV thermal (PVT) collector is investigated. Three alternatives for flow paths, namely, direct, curved and spiral for coolant flow, are considered, and a numerical model to simulate the system performance is developed.
Findings
The results show that the highest efficiency is achieved by the solar cell with a curved fluid flow path. Additionally, it is found that the curved path’s efficiency is 0.8% and 0.5% higher than that of direct and spiral paths, respectively. Moreover, the highest pressure drop occurs in the curved microchannel route, with around 260 kPa, which is 2% and 5% more than the pressure drop of spiral and direct.
Originality/value
To the best of the authors’ knowledge, there has been no study that investigates numerically heat transfer, fluid flow and electrical performance of a PV solar thermal cell, simultaneously. Moreover, the effect of the microchannel routes which are considered for water flow has not been considered by researchers so far. Taking all the mentioned points into account, in this study, numerical analysis on the effect of different microchannel paths on the performance of a PVT solar collector is carried. The investigation is conducted for the Reynolds number of 500.
Details
Keywords
U.S. Mahabaleshwar, S.M. Sachin, A.B. Vishalakshi, Gabriella Bognar and Bengt Ake Sunden
The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene…
Abstract
Purpose
The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene nanoparticles.
Design/methodology/approach
Governing nonlinear partial differential equations are converted to nonlinear ordinary differential equations by similarity transformation. Then, to analyze the flow, the authors derive the dual solutions to the flow problem. Biot number and radiation effect are included in the energy equation. The momentum equation was solved by using boundary conditions, and the temperature equation solved by using hypergeometric series solutions. Nusselt numbers and skin friction coefficients are calculated as functions of the Reynolds number. Further, the problem is governed by other parameters, namely, the magnetic parameter, radiation parameter, Prandtl number and mass transpiration. Graphene nanofluids have shown promising thermal conductivity enhancements due to the high thermal conductivity of graphene and have a wide range of applications affecting the thermal boundary layer and serve as coolants and thermal management systems in electronics or as heat transfer fluids in various industrial processes.
Findings
Results show that increasing the magnetic field decreases the momentum and increases thermal radiation. The heat source/sink parameter increases the thermal boundary layer. Increasing the volume fraction decreases the velocity profile and increases the temperature. Increasing the Eringen parameter increases the momentum of the fluid flow. Applications are found in the extrusion of polymer sheets, films and sheets, the manufacturing of plastic wires, the fabrication of fibers and the growth of crystals, among others. Heat sources/sinks are commonly used in electronic devices to transfer the heat generated by high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes to a fluid medium, thermal radiation on the fluid flow used in spectroscopy to study the properties of materials and also used in thermal imaging to capture and display the infrared radiation emitted by objects.
Originality/value
Micropolar fluid flow across stretching/shrinking surfaces is examined. Biot number and radiation effects are included in the energy equation. An increase in the volume fraction decreases the momentum boundary layer thickness. Nusselt numbers and skin friction coefficients are presented versus Reynolds numbers. A dual solution is obtained for a shrinking surface.
Details