Search results

1 – 10 of 47
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1158

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 4 September 2017

Athanasios N. Papadimopoulos, Stamatios A. Amanatiadis, Nikolaos V. Kantartzis, Theodoros T. Zygiridis and Theodoros D. Tsiboukis

Important statistical variations are likely to appear in the propagation of surface plasmon polariton waves atop the surface of graphene sheets, degrading the expected performance…

175

Abstract

Purpose

Important statistical variations are likely to appear in the propagation of surface plasmon polariton waves atop the surface of graphene sheets, degrading the expected performance of real-life THz applications. This paper aims to introduce an efficient numerical algorithm that is able to accurately and rapidly predict the influence of material-based uncertainties for diverse graphene configurations.

Design/methodology/approach

Initially, the surface conductivity of graphene is described at the far infrared spectrum and the uncertainties of its main parameters, namely, the chemical potential and the relaxation time, on the propagation properties of the surface waves are investigated, unveiling a considerable impact. Furthermore, the demanding two-dimensional material is numerically modeled as a surface boundary through a frequency-dependent finite-difference time-domain scheme, while a robust stochastic realization is accordingly developed.

Findings

The mean value and standard deviation of the propagating surface waves are extracted through a single-pass simulation in contrast to the laborious Monte Carlo technique, proving the accomplished high efficiency. Moreover, numerical results, including graphene’s surface current density and electric field distribution, indicate the notable precision, stability and convergence of the new graphene-based stochastic time-domain method in terms of the mean value and the order of magnitude of the standard deviation.

Originality/value

The combined uncertainties of the main parameters in graphene layers are modeled through a high-performance stochastic numerical algorithm, based on the finite-difference time-domain method. The significant accuracy of the numerical results, compared to the cumbersome Monte Carlo analysis, renders the featured technique a flexible computational tool that is able to enhance the design of graphene THz devices due to the uncertainty prediction.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 31 January 2020

Theodosios Karamanos, Stamatis A. Amanatiadis, Theodoros Zygiridis and Nikolaos V. Kantartzis

The majority of first-principle, homogenisation techniques makes use of the dipole terms of a small particle radiation, and, consequently, the respective dipole polarisabilities…

80

Abstract

Purpose

The majority of first-principle, homogenisation techniques makes use of the dipole terms of a small particle radiation, and, consequently, the respective dipole polarisabilities. This paper aims to take the next step and propose a new systematic technique for extracting the quadrupolarisability of planar metamaterial scatterers.

Design/methodology/approach

Firstly, it is assumed that the particle, under study, can be modelled as a set of dipole and quadrupole moments, and by utilising the respective polarisabilities, the far-field response of the scatterer is calculated. Then, the far-field scattering field of the particle is constructed in terms of the dipole and quadrupole moments, which, in turn, are expressed as a function of the unknown polarisabilities. Finally, the desired polarisabilities are retrieved by a system of equations, which involves numerically derived electric field values at specific positions around the scatterer.

Findings

The quadrupolarisability of planar metamaterial particles is extracted, through an easy to use, yet very accurate and efficient methodology. Moreover, the proposed technique is verified via comprehensive comparisons of consequently computed and simulated total radiated power values, which reveal its advantages and applicability limits. Finally, the total radiation power contribution of each calculated, individual multipole is provided, to further investigate the radiation mechanism of all nano-particles under study.

Originality/value

The initial and most important step of extracting a single quadrupolarisability of a planar realistic nano-particle has been performed, herein, for the first time. The addition of the respective quadrupole in the scattering model, shifts the multipole approximation limit upwards in terms of frequency, and, therefore, nano-particles with quadrupole resonances can, now, be precisely represented via polarisabilities for various metamaterial or metasurface applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 10 September 2018

Athanasios N. Papadimopoulos and Nikolaos V. Kantartzis

This paper aims to introduce an efficient time-domain formulation of adjustable accuracy for a consistent and trustworthy computation of electromagnetic field characteristics in…

55

Abstract

Purpose

This paper aims to introduce an efficient time-domain formulation of adjustable accuracy for a consistent and trustworthy computation of electromagnetic field characteristics in randomly varying configurations. The developed methodology is carefully certified via comprehensive comparisons with the corresponding outcomes obtained by the Monte Carlo approach.

Design/methodology/approach

The presented methodology uses higher-order approximations of Taylor series expansions of stochastic multivariable functions for the rapid estimation of the electromagnetic field component mean value and confidence intervals of their variance. Toward this objective, new time-update equations for the mean value and the variance of the involved electromagnetic field are elaborately derived.

Findings

The featured technique presents an efficient alternative to the excessively resource-consuming Monte Carlo finite-difference time-domain (MC–FDTD) implementation, which requires an unduly number of realizations to achieve a satisfying convergence. The higher-order stochastic algorithm retrieves accurately the statistical properties of all electromagnetic field in a single simulation, presenting promising accuracy, stability and convergence.

Originality/value

The adjustable-accuracy higher-order scheme introduces a new framework for the derivation of the stochastic explicit time-update equations and precisely computes the required confidence intervals for the electromagnetic field variance instead of the variance itself, which can be deemed a key advantage over existing schemes. This fully controllable formulation results in significantly more accurate calculations of the electromagnetic field variance, especially for larger fluctuations of the involved electromagnetic media parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 31 January 2020

Theodoros Zygiridis, Stamatis A. Amanatiadis, Theodosios Karamanos and Nikolaos V. Kantartzis

The extraordinary properties of graphene render it ideal for diverse contemporary and future applications. Aiming at the investigation of certain aspects commonly overlooked in…

81

Abstract

Purpose

The extraordinary properties of graphene render it ideal for diverse contemporary and future applications. Aiming at the investigation of certain aspects commonly overlooked in pertinent works, the authors study wave-propagation phenomena supported by graphene layers within a stochastic framework, i.e. when uncertainty in various factors affects the graphene’s surface conductivity. Given that the consideration of an increasing number of graphene sheets may increase the stochastic dimensionality of the corresponding problem, efficient surrogates with reasonable computational cost need to be developed.

Design/methodology/approach

The authors exploit the potential of generalized Polynomial Chaos (PC) expansions and develop low-cost surrogates that enable the efficient extraction of the necessary statistical properties displayed by stochastic graphene-related quantities of interest (QoI). A key step is the incorporation of an initial variance estimation, which unveils the significance of each input parameter and facilitates the selection of the most appropriate basis functions, by favoring anisotropic formulae. In addition, the impact of controlling the allowable input interactions in the expansion terms is investigated, aiming at further PC-basis elimination.

Findings

The proposed stochastic methodology is assessed via comparisons with reference Monte-Carlo results, and the developed reduced basis models are shown to be sufficiently reliable, being at the same time computationally cheaper than standard PC expansions. In this context, different graphene configurations with varying numbers of random inputs are modeled, and interesting conclusions are drawn regarding their stochastic responses.

Originality/value

The statistical properties of surface-plasmon polaritons and other QoIs are predicted reliably in diverse graphene configurations, when the surface conductivity displays non-trivial uncertainty levels. The suggested PC methodology features simple implementation and low complexity, yet its performance is not compromised, compared to other standard approaches, and it is shown to be capable of delivering valid results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 19 May 2020

Christos Salis, Nikolaos V. Kantartzis and Theodoros Zygiridis

The fabrication of electromagnetic (EM) components may induce randomness in several design parameters. In such cases, an uncertainty assessment is of high importance, as…

119

Abstract

Purpose

The fabrication of electromagnetic (EM) components may induce randomness in several design parameters. In such cases, an uncertainty assessment is of high importance, as simulating the performance of those devices via deterministic approaches may lead to a misinterpretation of the extracted outcomes. This paper aims to present a novel heuristic for the sparse representation of the polynomial chaos (PC) expansion of the output of interest, aiming at calculating the involved coefficients with a small computational cost.

Design/methodology/approach

This paper presents a novel heuristic that aims to develop a sparse PC technique based on anisotropic index sets. Specifically, this study’s approach generates those indices by using the mean elementary effect of each input. Accurate outcomes are extracted in low computational times, by constructing design of experiments (DoE) which satisfy the D-optimality criterion.

Findings

The method proposed in this study is tested on three test problems; the first one involves a transmission line that exhibits several random dielectrics, while the second and the third cases examine the effects of various random design parameters to the transmission coefficient of microwave filters. Comparisons with the Monte Carlo technique and other PC approaches prove that accurate outcomes are obtained in a smaller computational cost, thus the efficiency of the PC scheme is enhanced.

Originality/value

This paper introduces a new sparse PC technique based on anisotropic indices. The proposed method manages to accurately extract the expansion coefficients by locating D-optimal DoE.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 April 1995

N.V. Kantartzis, E.E. Kriezis and T.D. Tsiboukis

The FDTD approach is rapidly becoming one of the most widely used computational methods in electromagnetics. It is a marching‐in‐time procedure which simulates the continuous…

40

Abstract

The FDTD approach is rapidly becoming one of the most widely used computational methods in electromagnetics. It is a marching‐in‐time procedure which simulates the continuous actual waves by sampled data numerical analogues propagating in a data space stored in a computer. Thus it leads to a complete understanding of near fields and transient effects. In this paper, the study of the propagating modes and the calculation of the energy forced in the interior of a terminated waveguide is performed with an iterative FDTD technique. Results are obtained and compared with the theoretical ones. Their agreement is almost perfect.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 4
Type: Research Article
ISSN: 0332-1649

Access Restricted. View access options
Article
Publication date: 16 April 2020

Stamatis A. Amanatiadis, Theodoros Zygiridis and Nikolaos V. Kantartzis

The coupling characteristics between adjacent circuits are crucial for their efficient design in terms of electromagnetic compatibility features. Specifically, either the wireless…

107

Abstract

Purpose

The coupling characteristics between adjacent circuits are crucial for their efficient design in terms of electromagnetic compatibility features. Specifically, either the wireless power transfer can be enhanced or the interference can be limited. This paper aims to the extraction of the coupling characteristics of surface plasmon polariton waves propagating onto graphene layers to facilitate the telecommunication system design for advanced THz applications.

Design/methodology/approach

The surface conductivity of graphene is described at the far-infrared spectrum and modelled accurately by means of a properly modified finite-difference time-domain) scheme. Then, a series of numerical simulations for different coupling setups is conducted to extract an accurate generalised parametric coupling model that is dependent explicitly on the fundamental propagation features of graphene.

Findings

The coupling coefficients of two basic waveguiding setups are examined thoroughly. The initial one includes two parallel graphene layers of infinite dimensions, and it is observed that the coupling is influenced via the ratio between their distances to the confinement of the surface wave. The second scenario is composed of graphene microstrips that are parallel to their small edge, namely, microstrip width. The extracted numerical results indicate that the coupling coefficient depends on the ratio between widths to wavelength.

Originality/value

The accurate extraction of the generalised coupling coefficients for graphene surface wave circuits is conducted in this work via an adjustable numerical technique for a novel family of plasmonic couplers. It is derived that only the fundamental propagation features of graphene, such as the wavelength and the confinement of the surface waves, have an effect on the coupling calculation, thus enabling a consistent electromagnetic compatibility study.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2002

Nikolaos V. Kantartzis, Theodoros K. Katsibas, Christos S. Antonopoulos and Theodoros D. Tsiboukis

A systematic, non‐orthogonal FDTD algorithm for the unified and fully dual construction of curvilinear PMLs in 3‐D lossy electromagnetic and advective acoustic problems, is…

1498

Abstract

A systematic, non‐orthogonal FDTD algorithm for the unified and fully dual construction of curvilinear PMLs in 3‐D lossy electromagnetic and advective acoustic problems, is presented in this paper. Postulating a consistent mathematical formulation, the novel methodology introduces a set of general vector parametric equations that describe wave propagation in both media and facilitate the effective treatment of the remarkably complex, arbitrarily‐aligned (non‐uniform) source or mean flow terms, particularly at low frequencies. The discretization procedure is performed via accurate higher‐order FDTD topological concepts, which along with a well‐posed variable transformation, suppress the undesired lattice dispersion and anisotropy errors. Hence, due to these additional degrees of design freedom and their optimal establishment, the new stable PMLs (split‐field or Maxwellian) accomplish a critical attenuation of the evanescent, vorticity or elastic wave families by carefully accounting for every loss mechanism. Numerical investigation reveals the superiority of the proposed technique in terms of various open‐region, waveguide and ducted‐domain simulations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 21 January 2022

Theodoros Zygiridis and Nikolaos Kantartzis

The computational accuracy and performance of finite-difference time-domain (FDTD) methods are affected by the implementation of approximating derivative formulae in diverse ways…

79

Abstract

Purpose

The computational accuracy and performance of finite-difference time-domain (FDTD) methods are affected by the implementation of approximating derivative formulae in diverse ways. This study aims to focus on FDTD models featuring material dispersion with negligible losses and investigates two specific aspects that, until today, are usually examined in the context of non-dispersive media only. These aspects pertain to certain abnormal characteristics of coarsely resolved electromagnetic waves and the selection of the proper time-step size, in the case of a high-order discretization scheme.

Design/methodology/approach

Considering a Lorentz medium with negligible losses, the propagation characteristics of coarsely resolved waves is examined first, by investigating thoroughly the numerical dispersion relation of a typical discretization scheme. The second part of the study is related to the unbalanced space-time errors in FDTD schemes with dissimilar space-time approximation orders. The authors propose a remedy via the suitable choice of the time-step size, based on the single-frequency minimization of an error expression extracted, again, from the scheme’s numerical dispersion formula.

Findings

Unlike wave propagation in free space, there exist two parts of the frequency spectrum where waves in a Lorentz medium experience non-physical attenuation and display non-changing propagation constants, due to coarse discretization. The authors also show that an optimum time-step size can be determined, in the case of the (2,4) FDTD scheme, which minimizes the selected error formula at a specific frequency point, promoting more efficient implementations.

Originality/value

Unique characteristics displayed by discretized waves, which have been known for non-dispersive media, are examined and verified for the first time in the case of dispersive materials, thus completing the comprehension of the space-time discretization impact on simulated quantities. In addition, the closed-form formula of the optimum time-step enables the efficient implementation of the (2,4) FDTD method, minimizing the detrimental influence of the low-order temporal integration.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 47
Per page
102050