Search results

1 – 7 of 7
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 10 August 2020

Nandha Gopal J. and Muthuselvan N.B.

The purpose of this paper is to enhance the response of quadratic boost converter inverter system (QBCIS) and also investigate proportional integral (PI) and fractional order…

244

Abstract

Purpose

The purpose of this paper is to enhance the response of quadratic boost converter inverter system (QBCIS) and also investigate proportional integral (PI) and fractional order proportional integral derivative (FOPID)-based space vector modulation inverter (SVMI) systems.

Design/methodology/approach

This paper presents modern expansion in control methods and power electronics have created wind-based AC to AC converters that relays to AC drives. The process includes the flow of quadratic boost converter (QBC) and SVMI locate their technique in associating permanent magnet synchronous generator and three phase load. This effort conveys with digital simulation using MATLAB/Simulink and hardware implementation of current mode wind-based QBCIS.

Findings

The direct current (DC) output from the rectifier is boosted using Quadratic Boost Converter (QBC). The DC yield of QBC is provided to the SVMI. The alternating current (AC) yield voltage is attained by using three-phase filter. The investigations are done with PI and FOPID-based SVMI systems. Current mode FOPID control is proposed to improve the time response of QBCIS system.

Originality/value

The simulation results are compared with the hardware results of QBCIS. The results of the comparison of PI with FOPID controlled by converters are made to show the improvement in terms of settling time and steady-state error.

Access Restricted. View access options
Article
Publication date: 10 November 2021

Alireza Goudarzian

Control-signal-to-output-voltage transfer function of the conventional boost converter has at least one right-half plane zero (RHPZ) in the continuous conduction mode which can…

126

Abstract

Purpose

Control-signal-to-output-voltage transfer function of the conventional boost converter has at least one right-half plane zero (RHPZ) in the continuous conduction mode which can restrict the open-loop bandwidth of the converter. This problem can complicate the control design for the load voltage regulation and conversely, impact on the stability of the closed-loop system. To remove this positive zero and improve the dynamic performance, this paper aims to suggest a novel boost topology with a step-up voltage gain by developing the circuit diagram of a conventional boost converter.

Design/methodology/approach

Using a transformer, two different pathways are provided for a classical boost circuit. Hence, the effect of the RHPZ can be easily canceled and the voltage gain can be enhanced which provides conditions for achieving a smaller working duty cycle and reducing the voltage stress of the power switch. Using this technique makes it possible to achieve a good dynamic response compared to the classical boost converter.

Findings

The observations show that the phase margin of the proposed boost converter can be adequately improved, its bandwidth is largely increased, due to its minimum-phase structure through RHPZ cancellation. It is suitable for fast dynamic response applications such as micro-inverters and fuel cells.

Originality/value

The introduced method is analytically studied via determining the state-space model and necessary criteria are obtained to achieve a minimum-phase structure. Practical observations of a constructed prototype for the voltage conversion from 24 V to 100 V and various load conditions are shown.

Access Restricted. View access options
Article
Publication date: 6 February 2024

Alireza Goudarzian and Rohallah Pourbagher

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of…

67

Abstract

Purpose

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of these converters shows that a right-half-plane (RHP) zero appears in their control-to-output transfer function, exhibiting a nonminimum-phase stability. This RHP zero can limit the frequency response and dynamic specifications of the converters; therefore, the output voltage response is sluggish. To overcome these problems, the purpose of this study is to analyze, model and design a new isolated forward single-ended primary-inductor converter (IFSEPIC) through RHP zero alleviation.

Design/methodology/approach

At first, the normal operation of the suggested IFSEPIC is studied. Then, its average model and control-to-output transfer function are derived. Based on the obtained model and Routh–Hurwitz criterion, the components are suitably designed for the proposed IFSEPIC, such that the derived dynamic model can eliminate the RHP zero.

Findings

The advantages of the proposed IFSEPIC can be summarized as: This converter can provide conditions to achieve fast dynamic behavior and minimum-phase stability, owing to the RHP zero cancellation; with respect to conventional isolated converters, a larger gain can be realized using the proposed topology; thus, it is possible to attain a smaller operating duty cycle; for conventional isolated converters, transformer core saturation is a major concern, owing to a large magnetizing current. However, the average value of the magnetizing current becomes zero for the proposed IFSEPIC, thereby avoiding core saturation, particularly at high frequencies; and the input current of the proposed converter is continuous, reducing input current ripple.

Originality/value

The key benefits of the proposed IFSEPIC are shown via comparisons. To validate the design method and theoretical findings, a practical implementation is presented.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

Access Restricted. View access options
Article
Publication date: 29 July 2022

Saravanan N. and Hosimin Thilagar S.

The purpose of this paper rapid development of various voltage sag compensation techniques in DC bus using ultra-capacitors (UCs) provides satisfactory results when compared with…

34

Abstract

Purpose

The purpose of this paper rapid development of various voltage sag compensation techniques in DC bus using ultra-capacitors (UCs) provides satisfactory results when compared with required peak power demand for shorter duration. Later, UCs have been used as floating capacitors [1] [2]. Various UCs are available based on internal resistances which also rely on its manufacturing materials, similar to double layer capacitors.

Design/methodology/approach

This paper demonstrates UCs based voltage sag compensation at load side under different working modes of hydraulic pack (HP) in an armored fighting vehicle (AFV). The main sources to supply the HP are 24 V, 400 Ahr battery bank and 20 kW main generator. HP is considered to be the highest power load of a system. 2,500 A inrush current was drawn by HP during initial conditions, and also, this system works in both elevation and azimuth mode. Voltage sag has been varied from 15 to 24 V for different modes. But as per the military standard, electrical systems should operate between 18 and 32 V DC. Because of insufficient terminal voltage, required energy cannot be attained and supplied to the loads. The proposed topology compensated the voltage sag and maintains nominal voltage on a DC bus. The devised circuit has been verified under all possible operating loads such as continuous, intermittent and momentary. The same has been simulated using MATLAB/Simulink and was experimentally verified. The minimum voltage maintained in a DC bus is 22.2 V in simulation, while experimentally, it was 24.2 V.

Findings

For getting higher percentage of efficiency, secondary energy system configuration, mainly designed for electrical vehicles, is needed. It was implemented and same was tested with the fighting vehicle system[1]. The proposed configuration comprises of bank of an UC and a battery bank. The system was finally implemented in AFVs.

Originality/value

The goods vehicles made of UCs can hold very minimum energy because of minimum density of energy. The modified AFV can have minimum charging as well as discharging of rate of energy and, thus, power[3][4]. Thus, the proposed idea of modified vehicle system has influence over significant change in the state of charge.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Access Restricted. View access options
Article
Publication date: 13 July 2021

Ramazan Özkan and Mustafa Serdar Genç

Wind turbines are one of the best candidates to solve the problem of increasing energy demand in the world. The aim of this paper is to apply a multi-objective structural…

349

Abstract

Purpose

Wind turbines are one of the best candidates to solve the problem of increasing energy demand in the world. The aim of this paper is to apply a multi-objective structural optimization study to a Phase II wind turbine blade produced by the National Renewable Energy Laboratory to obtain a more efficient small-scale wind turbine.

Design/methodology/approach

To solve this structural optimization problem, a new Non-Dominated Sorting Genetic Algorithm (NSGA-II) was performed. In the optimization study, the objective function was on minimization of mass and cost of the blade, and design parameters were composite material type and spar cap layer number. Design constraints were deformation, strain, stress, natural frequency and failure criteria. ANSYS Composite PrepPost (ACP) module was used to model the composite materials of the blade. Moreover, fluid–structure interaction (FSI) model in ANSYS was used to carry out flow and structural analysis on the blade.

Findings

As a result, a new original blade was designed using the multi-objective structural optimization study which has been adapted for aerodynamic optimization, the NSGA-II algorithm and FSI. The mass of three selected optimized blades using carbon composite decreased as much as 6.6%, 11.9% and 14.3%, respectively, while their costs increased by 23.1%, 29.9% and 38.3%. This multi-objective structural optimization-based study indicates that the composite configuration of the blade could be altered to reach the desired weight and cost for production.

Originality/value

ACP module is a novel and advanced composite modeling technique. This study is a novel study to present the NSGA-II algorithm, which has been adapted for aerodynamic optimization, together with the FSI. Unlike other studies, complex composite layup, fiber directions and layer orientations were defined by using the ACP module, and the composite blade analyzed both aerodynamic pressure and structural design using ACP and FSI modules together.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Book part
Publication date: 28 June 2023

Ali Zamani Babgohari, Danial Esmaelnezhad and Mohammadreza Taghizadeh-Yazdi

Pressure on business to direct their activities responsibly has been increased during the last years to extent their suitability performance in all economic, social and…

Abstract

Pressure on business to direct their activities responsibly has been increased during the last years to extent their suitability performance in all economic, social and environmental dimensions. This has motivated businesses and researchers to identify ways to implement sustainable and resilient operations. In the era of economic globalisation, small and medium enterprises (SMEs) are recognised as an engine of sustainable economic development in both the developed and developing world. Their competitiveness drives the economy, both nationally and internationally. SMEs have faced challenges in developing, internationalisation and achieving competitive advantage. Purpose of current study is to identify and analyse the sustainability and resiliency (SR) barriers to SME internationalisation and prioritise the practices to overcome the negative influence of barriers. In this regard, first, barriers and innovative practices have been identified through the literature review. Second, the essential barriers will be selected through reduction steps by the intuitionistic fuzzy Delphi (IF-Delphi) method. After computing the weight of barriers through the IF-DEMATEL method, the practices were prioritised using four multiple attribute decision-making (MADM) methods in an IF environment. Finally, the scores were aggregated by correlation coefficient and standard deviation (CCSD) technique. Results present that ‘Lack of economical resources to global exports’ and ‘Complications in acclimatizing export product design’ are the top priority barriers and ‘Knowledge of global market opportunities’ and ‘Networking with business incubator institutions’ have been recognised as the essential SMEs internationalisation practices. This study contributes to creating a more focussed approach towards the growth of SMEs. The study results would be helpful for industry, policymakers and academia.

Details

Decision-Making in International Entrepreneurship: Unveiling Cognitive Implications Towards Entrepreneurial Internationalisation
Type: Book
ISBN: 978-1-80382-234-1

Keywords

Access Restricted. View access options
Article
Publication date: 21 December 2023

Manikandaraja G., Pandiyarajan R., Vasanthanathan A. and Sabarish S.

This study aims to evaluate the development of composites made of epoxy (E) resin with different weight percentages of polypropylene (PP) and graphene oxide (Go) to form…

50

Abstract

Purpose

This study aims to evaluate the development of composites made of epoxy (E) resin with different weight percentages of polypropylene (PP) and graphene oxide (Go) to form nanocomposite plates.

Design/methodology/approach

A hand lay-up process was used to develop 21 different composites, with varying concentrations of PP (5%–35%) and Go (5%–35%). A ternary composite of E matrix was produced by combining binary fillers PP and Go (5%–35%) in a 1:1 ratio to a (95%–5%) solution. With the help of adopting the melt condensation deal to extract Go, the modified Hummers method was used to make Go platelets.

Findings

Through field emission scanning electron microscopy (FESEM) and X-ray diffraction investigations, the particulate’s size and structural characteristics were identified. Based on the FESEM analysis of the collapsed zones of the composites, a warp-and-weft-like structure is evident, which endorses the growth yield strength, flexural modulus and impact strength of the composites.

Originality/value

The developed nanocomposites have exceptional mechanical capabilities compared to plain E resin, with E resin exhibiting better tensile strength, modulus and flexural strength when combined with 10% PP and 10% Go. When compared to neat E resin, materials formed from composites have exceptional mechanical properties. When mixed with 10% PP and 10% Go, E resin in particular displays improved tensile strength (23 MPa), tensile modulus (4.15 GPa), flexural strength (75.6 MPa) and other attributes. Engineering implications include automobile side door panels, spacecraft applications, brake pads and flexible battery guards.

Details

Pigment & Resin Technology, vol. 54 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 7 of 7
Per page
102050