Search results

1 – 10 of 50
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Book part
Publication date: 5 October 2018

Nasir Bedewi Siraj, Aminah Robinson Fayek and Mohamed M. G. Elbarkouky

Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective…

Abstract

Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective uncertainties, imprecisions and vagueness surrounding the decision-making process. In many instances, the decision-making process is based on linguistic terms rather than numerical values. Hence, structured fuzzy consensus-reaching processes and fuzzy aggregation methods are instrumental in multi-criteria group decision-making (MCGDM) problems for capturing the point of view of a group of experts. This chapter outlines different fuzzy consensus-reaching processes and fuzzy aggregation methods. It presents the background of the basic theory and formulation of these processes and methods, as well as numerical examples that illustrate their theory and formulation. Application areas of fuzzy consensus reaching and fuzzy aggregation in the construction domain are identified, and an overview of previously developed frameworks for fuzzy consensus reaching and fuzzy aggregation is provided. Finally, areas for future work are presented that highlight emerging trends and the imminent needs of fuzzy consensus reaching and fuzzy aggregation in the construction domain.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Access Restricted. View access options
Article
Publication date: 6 March 2017

Xiaodong Wang and Jianfeng Cai

For some specific multi-criteria decision-making (MCDM) problems, especially in emergency situations, because of the feature of criteria and other fuzzy factors, it is more…

686

Abstract

Purpose

For some specific multi-criteria decision-making (MCDM) problems, especially in emergency situations, because of the feature of criteria and other fuzzy factors, it is more appropriate that values of different criteria are expressed in their correspondingly appropriate value types. The purpose of this paper is to build a multi-criteria group decision-making (MCGDM) model dealing with heterogeneous information based on distance-based VIKOR to solve emergency supplier selection in practice appropriately and flexibly, where a compromise solution is more acceptable and suitable.

Design/methodology/approach

This paper extends the classical VIKOR to a generalized distance-based VIKOR to handle heterogeneous information containing crisp number, interval number, intuitionistic fuzzy number and hesitant fuzzy linguistic value, and develops an MCGDM model based on the distance-based VIKOR to handle the multi-criteria heterogeneous information in practice. This paper also introduces a parameter called non-fuzzy degree for each type of heterogeneous value to moderate the computation on aggregating heterogeneous hybrid distances.

Findings

The proposed distance-based model can handle the heterogeneous information appropriately and flexibly because the computational process is directly operated on the heterogeneous information based on generalized distance without a transformation process, which can improve the decision-making efficiency and reduce information loss. An example of emergency supplier selection is given to illustrate the proposed method.

Originality/value

This paper develops an MCGDM model based on the distance-based VIKOR to handle heterogeneous information appropriately and flexibly. In emergency supplier selection situations, the proposed decision-making model allows the decision-makers to express their judgments on criteria in their appropriate value types.

Access Restricted. View access options
Article
Publication date: 23 December 2021

Xiang Jia and Yingming Wang

The purpose of this paper is to develop a multi-criterion group decision-making (MCGDM) method by combining the regret theory and the Choquet integral under 2-tuple linguistic…

160

Abstract

Purpose

The purpose of this paper is to develop a multi-criterion group decision-making (MCGDM) method by combining the regret theory and the Choquet integral under 2-tuple linguistic environment and apply the proposed method to deal with the supplier selection problem.

Design/methodology/approach

When making a decision, the decision-maker is more willing to choose the alternative(s) which is preferred by the experts so as to avoid the regret. At the same time, the correlative relationships among the criterion set can be sufficiently described by the fuzzy measures, later the evaluations of a group of criteria can be aggregated by means of the Choquet integral. Hence, the authors cope with the MCGDM problems by combining the regret theory and the Choquet integral, where the fuzzy measures of criteria are partly known or completely unknown and the evaluations are expressed by 2-tuples. The vertical and the horizontal regret-rejoice functions are defined at first. Then, a model aiming to determine the missing fuzzy measures is constructed. Based on which, an MCGDM method is proposed. The proposed method is applied to tackle a practical decision-making problem to verify its feasibility and the effectiveness.

Findings

The vertical and the horizontal regret-rejoice functions are defined. The relationships of the fuzzy measures are expressed by the sets. A model is built for determining the fuzzy measures. Based on which, an MCGDM method is proposed. The results show that the proposed method can solve the MCGDM problems within the context of 2-tuple, where the decision-maker avoids the regret and the criteria are correlative.

Originality/value

The paper proposes an MCGDM method by combining the regret theory and the Choquet integral, which is suitable for dealing with a variety of decision-making problems.

Details

Kybernetes, vol. 52 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options
Article
Publication date: 21 June 2022

Hafiz Muhammad Athar Farid, Harish Garg, Muhammad Riaz and Gustavo Santos-García

Single-valued neutrosophic sets (SVNSs) are efficient models to address the complexity issues potentially with three components, namely indeterminacy, truthness and falsity…

344

Abstract

Purpose

Single-valued neutrosophic sets (SVNSs) are efficient models to address the complexity issues potentially with three components, namely indeterminacy, truthness and falsity. Taking advantage of SVNSs, this paper introduces some new aggregation operators (AOs) for information fusion of single-valued neutrosophic numbers (SVNNs) to meet multi-criteria group decision-making (MCGDM) challenges.

Design/methodology/approach

Einstein operators are well-known AOs for smooth approximation, and prioritized operators are suitable to take advantage of prioritized relationships among multiple criteria. Motivated by the features of these operators, new hybrid aggregation operators are proposed named as “single-valued neutrosophic Einstein prioritized weighted average (SVNEPWA) operator” and “single-valued neutrosophic Einstein prioritized weighted geometric (SVNEPWG) operators.” These hybrid aggregation operators are more efficient and reliable for information aggregation.

Findings

A robust approach for MCGDM problems is developed to take advantage of newly developed hybrid operators. The effectiveness of the proposed MCGDM method is demonstrated by numerical examples. Moreover, a comparative analysis and authenticity analysis of the suggested MCGDM approach with existing approaches are offered to examine the practicality, validity and superiority of the proposed operators.

Originality/value

The study reveals that by choosing a suitable AO as per the choice of the expert, it will provide a wide range of compromise solutions for the decision-maker.

Details

Management Decision, vol. 61 no. 2
Type: Research Article
ISSN: 0025-1747

Keywords

Access Restricted. View access options
Article
Publication date: 31 January 2020

Weimin Ma, Wenjing Lei and Bingzhen Sun

The purpose of this paper is to propose a three-way group decision-making approach to address the selection of green supplier, by extending decision-theoretic rough set (DTRS…

349

Abstract

Purpose

The purpose of this paper is to propose a three-way group decision-making approach to address the selection of green supplier, by extending decision-theoretic rough set (DTRS) into hesitant fuzzy linguistic (HFL) environment, considering the flexible evaluation expression format of HFL term set (HFLTS) and the idea of minimum expected risk in DTRS.

Design/methodology/approach

Specifically, the authors first present the calculation method of the conditional probability and discuss the loss functions of DTRS with HFL element (HFLE), along with some associated properties being investigated in detail. Further, three-way group decisions rules can be deduced, followed by the cost of every green supplier candidate. Thus, based on these discussions, a novel green supplier selection DTRS model that combines multi-criteria group decision-making (MCGDM) and HFLTS is designed.

Findings

A numerical example of green supplier selection, the comparative analysis and associated discussions are conducted to illustrate the applicability and novelty of the presented model.

Practical implications

The selection of green supplier has played a critically strategic role in sustainable enterprise development due to continuous environmental concerns. This paper offers an insight for companies to select green supplier selection from the perspective of three-way group decisions.

Originality/value

This paper uses three-way decisions to address green supplier selection in the HFL context, which is considered as a MCGDM issue.

Access Restricted. View access options
Article
Publication date: 21 November 2018

Animesh Biswas and Biswajit Sarkar

The purpose of this paper is to develop a methodology based on TODIM (an acronym in Portuguese for interactive and multicriteria decision-making) approach for the selection of the…

289

Abstract

Purpose

The purpose of this paper is to develop a methodology based on TODIM (an acronym in Portuguese for interactive and multicriteria decision-making) approach for the selection of the best alternative in the context of multi criteria group decision-making (MCGDM) problems under possibilistic uncertainty in interval-valued Pythagorean fuzzy (IVPF) environment.

Design/methodology/approach

In this paper, IVPF-TODIM method is proposed. Some new point operator-based similarity measures (POSMs) for IVPF sets (IVPFSs) are introduced which have the capability to reduce the degree of uncertainty of the elements in the universe of discourse corresponding to IVPFS. Then the newly defined POSMs are used to compute the measure of relative dominance of each alternative over other alternatives in the IVPF-TODIM context. Finally, generalized mean aggregation operator is used to find the best alternative.

Findings

As the TODIM method is used to solve the MCGDM problems under uncertainty, POSMs are developed by using three parameters which can control the effect of decision-makers’ psychological perception under risk.

Research limitations/implications

The decision values are used in IVPF numbers (IVPFNs) format.

Practical implications

The proposed method is capable to solve real-life MCGDM problems with not only IVPFNs format but also with interval-valued intuitionistic fuzzy numbers.

Originality/value

As per authors’ concern, no approach using TODIM with IVPFNs is found in literature to solve MCGDM problems under uncertainty. The final judgment values of alternatives using the extended TODIM methodology are highly corroborate in compare to the results of existing methods, which proves its great potentiality in solving MCGDM problems under risk.

Access Restricted. View access options
Article
Publication date: 14 November 2022

Yujia Liu, Changyong Liang, Jian Wu, Hemant Jain and Dongxiao Gu

Complex cost structures and multiple conflicting objectives make selecting an appropriate cloud service difficult. The purpose of this study is to propose a novel group consensus…

174

Abstract

Purpose

Complex cost structures and multiple conflicting objectives make selecting an appropriate cloud service difficult. The purpose of this study is to propose a novel group consensus decision making method for cloud services selection with knowledge deficit by trust functions.

Design/methodology/approach

This article proposes a knowledge deficit-based multi-criteria group decision-making (MCGDM) method for cloud-service selection based on trust functions. Firstly, the concept of trust functions and a ranking method is developed to express the decision-making opinions. Secondly, a novel 3D normalized trust degree (NTD) is defined to measure the consensus levels. Thirdly, a knowledge deficit-based interactive consensus model is proposed for the inconsistent experts to modify their decision opinions. Finally, a real case study has been carried out to illustrate the framework and compare it with other methods.

Findings

The proposed method is practical and effective which is verified by the real case study. Knowledge deficit is an important concept in cloud service selection which is verified by the comparison of the proposed recommended mechanism based on KDD with the conventional recommended mechanism based on average value. A 3D NTD which considers three values (trust, not trust and knowledge deficit) is defined to measure the consensus levels. A knowledge deficit-based interactive consensus model is proposed to help decision-makers reach group consensus. The proposed group consensus model enables the inconsistent decision-makers to accept the revised opinions of those with less knowledge deficit, rather than accepting the recommended opinions averagely.

Originality/value

The proposed a knowledge deficit-based MCGDM cloud service selection method considers group consensus in cloud service selection. The concept of knowledge deficit is considered in modeling the group consensus measuring and reaching method.

Access Restricted. View access options
Article
Publication date: 7 September 2022

Sandang Guo, Qian Li and Yaqian Jing

The existing consensus reaching mechanisms ignore the influence of social triangle structure on the decision-makers’ (DMs') weights, and the consensus reaching process (CRP) fails…

96

Abstract

Purpose

The existing consensus reaching mechanisms ignore the influence of social triangle structure on the decision-makers’ (DMs') weights, and the consensus reaching process (CRP) fails to fully reflect the DMs' subjectivity and can be time consuming and costly. To solve these issues, a novel CRP for multi-criteria group decision-making (MCGDM) problems with intuitionistic grey linguistic numbers (IGLNs) is proposed in this paper.

Design/methodology/approach

First, a weight calculation method is proposed by analysing the triangle structure of DMs' social network and scale of adjacent nodes. Then, a consensus degree index based on three-level polygon area is defined and applied to identify the inconsistent DMs. Finally, the feedback mechanism based on particle swarm optimisation (PSO) algorithm under grey linguistic environment is developed, where subjective trust relationships in social network is utilised to determine the adjustment coefficient.

Findings

The advantages of the proposed method are highlighted by two practical applications of the evaluation of tunnel construction method and the selection of a hotel for the centralised isolation. Comparision analysis and numerical simulation are performed to reveal the effectiveness and applicability of the method.

Practical implications

The proposed model can not only reflect the effect of triangle structure in social network on DMs' weights, but also reduce the time and cost of decision-making.

Originality/value

The main contribution of this paper is to propose a new MCGDM model based on intuitionistic grey linguistic numbers, which can handle the problem of inconsistency of information more effectively.

Details

Grey Systems: Theory and Application, vol. 13 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Access Restricted. View access options
Article
Publication date: 18 June 2024

Sandang Guo, Liuzhen Guan, Qian Li and Jing Jia

Considering the bounded confidence of decision-makers (DMs), a new grey multi-criteria group consensus decision-making (GMCGCDM) model is established by using interval grey number…

69

Abstract

Purpose

Considering the bounded confidence of decision-makers (DMs), a new grey multi-criteria group consensus decision-making (GMCGCDM) model is established by using interval grey number (IGN), cobweb model, social network analysis (SNA) and consensus reaching process (CPR).

Design/methodology/approach

Firstly, the model analyzes the social relationship of DM under social networks and proposes a calculation method for DMs’ weights based on SNA. Secondly, the model defines a cobweb model to consider the preferences of decision-making alternatives in the decision-making process. The consensus degree is calculated by the area surrounded by the connections between each index value of DMs and the group. Then, the model coordinates the different opinions of various DMs to reduce the degree of bias of each DM and designs a consensus feedback mechanism based on bounded confidence to guide DMs to reach consensus.

Findings

The advantage of the proposed method is to highlight the practical application, taking the selection of low-carbon suppliers in the context of dual carbon as an example. Comparison analysis is performed to reveal the interpretability and applicability of the method.

Originality/value

The main contribution of this paper is to propose a new GMCGCDM model, which can not only expand the calculation method of DM’s weight and consensus degree but also reduce the time and cost of decision-making.

Details

Grey Systems: Theory and Application, vol. 14 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Available. Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

1 – 10 of 50
Per page
102050