Nasir Bedewi Siraj, Aminah Robinson Fayek and Mohamed M. G. Elbarkouky
Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective…
Abstract
Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective uncertainties, imprecisions and vagueness surrounding the decision-making process. In many instances, the decision-making process is based on linguistic terms rather than numerical values. Hence, structured fuzzy consensus-reaching processes and fuzzy aggregation methods are instrumental in multi-criteria group decision-making (MCGDM) problems for capturing the point of view of a group of experts. This chapter outlines different fuzzy consensus-reaching processes and fuzzy aggregation methods. It presents the background of the basic theory and formulation of these processes and methods, as well as numerical examples that illustrate their theory and formulation. Application areas of fuzzy consensus reaching and fuzzy aggregation in the construction domain are identified, and an overview of previously developed frameworks for fuzzy consensus reaching and fuzzy aggregation is provided. Finally, areas for future work are presented that highlight emerging trends and the imminent needs of fuzzy consensus reaching and fuzzy aggregation in the construction domain.
Details
Keywords
Xiaodong Wang and Jianfeng Cai
For some specific multi-criteria decision-making (MCDM) problems, especially in emergency situations, because of the feature of criteria and other fuzzy factors, it is more…
Abstract
Purpose
For some specific multi-criteria decision-making (MCDM) problems, especially in emergency situations, because of the feature of criteria and other fuzzy factors, it is more appropriate that values of different criteria are expressed in their correspondingly appropriate value types. The purpose of this paper is to build a multi-criteria group decision-making (MCGDM) model dealing with heterogeneous information based on distance-based VIKOR to solve emergency supplier selection in practice appropriately and flexibly, where a compromise solution is more acceptable and suitable.
Design/methodology/approach
This paper extends the classical VIKOR to a generalized distance-based VIKOR to handle heterogeneous information containing crisp number, interval number, intuitionistic fuzzy number and hesitant fuzzy linguistic value, and develops an MCGDM model based on the distance-based VIKOR to handle the multi-criteria heterogeneous information in practice. This paper also introduces a parameter called non-fuzzy degree for each type of heterogeneous value to moderate the computation on aggregating heterogeneous hybrid distances.
Findings
The proposed distance-based model can handle the heterogeneous information appropriately and flexibly because the computational process is directly operated on the heterogeneous information based on generalized distance without a transformation process, which can improve the decision-making efficiency and reduce information loss. An example of emergency supplier selection is given to illustrate the proposed method.
Originality/value
This paper develops an MCGDM model based on the distance-based VIKOR to handle heterogeneous information appropriately and flexibly. In emergency supplier selection situations, the proposed decision-making model allows the decision-makers to express their judgments on criteria in their appropriate value types.
Details
Keywords
The purpose of this paper is to develop a multi-criterion group decision-making (MCGDM) method by combining the regret theory and the Choquet integral under 2-tuple linguistic…
Abstract
Purpose
The purpose of this paper is to develop a multi-criterion group decision-making (MCGDM) method by combining the regret theory and the Choquet integral under 2-tuple linguistic environment and apply the proposed method to deal with the supplier selection problem.
Design/methodology/approach
When making a decision, the decision-maker is more willing to choose the alternative(s) which is preferred by the experts so as to avoid the regret. At the same time, the correlative relationships among the criterion set can be sufficiently described by the fuzzy measures, later the evaluations of a group of criteria can be aggregated by means of the Choquet integral. Hence, the authors cope with the MCGDM problems by combining the regret theory and the Choquet integral, where the fuzzy measures of criteria are partly known or completely unknown and the evaluations are expressed by 2-tuples. The vertical and the horizontal regret-rejoice functions are defined at first. Then, a model aiming to determine the missing fuzzy measures is constructed. Based on which, an MCGDM method is proposed. The proposed method is applied to tackle a practical decision-making problem to verify its feasibility and the effectiveness.
Findings
The vertical and the horizontal regret-rejoice functions are defined. The relationships of the fuzzy measures are expressed by the sets. A model is built for determining the fuzzy measures. Based on which, an MCGDM method is proposed. The results show that the proposed method can solve the MCGDM problems within the context of 2-tuple, where the decision-maker avoids the regret and the criteria are correlative.
Originality/value
The paper proposes an MCGDM method by combining the regret theory and the Choquet integral, which is suitable for dealing with a variety of decision-making problems.
Details
Keywords
Hafiz Muhammad Athar Farid, Harish Garg, Muhammad Riaz and Gustavo Santos-García
Single-valued neutrosophic sets (SVNSs) are efficient models to address the complexity issues potentially with three components, namely indeterminacy, truthness and falsity…
Abstract
Purpose
Single-valued neutrosophic sets (SVNSs) are efficient models to address the complexity issues potentially with three components, namely indeterminacy, truthness and falsity. Taking advantage of SVNSs, this paper introduces some new aggregation operators (AOs) for information fusion of single-valued neutrosophic numbers (SVNNs) to meet multi-criteria group decision-making (MCGDM) challenges.
Design/methodology/approach
Einstein operators are well-known AOs for smooth approximation, and prioritized operators are suitable to take advantage of prioritized relationships among multiple criteria. Motivated by the features of these operators, new hybrid aggregation operators are proposed named as “single-valued neutrosophic Einstein prioritized weighted average (SVNEPWA) operator” and “single-valued neutrosophic Einstein prioritized weighted geometric (SVNEPWG) operators.” These hybrid aggregation operators are more efficient and reliable for information aggregation.
Findings
A robust approach for MCGDM problems is developed to take advantage of newly developed hybrid operators. The effectiveness of the proposed MCGDM method is demonstrated by numerical examples. Moreover, a comparative analysis and authenticity analysis of the suggested MCGDM approach with existing approaches are offered to examine the practicality, validity and superiority of the proposed operators.
Originality/value
The study reveals that by choosing a suitable AO as per the choice of the expert, it will provide a wide range of compromise solutions for the decision-maker.
Details
Keywords
Weimin Ma, Wenjing Lei and Bingzhen Sun
The purpose of this paper is to propose a three-way group decision-making approach to address the selection of green supplier, by extending decision-theoretic rough set (DTRS…
Abstract
Purpose
The purpose of this paper is to propose a three-way group decision-making approach to address the selection of green supplier, by extending decision-theoretic rough set (DTRS) into hesitant fuzzy linguistic (HFL) environment, considering the flexible evaluation expression format of HFL term set (HFLTS) and the idea of minimum expected risk in DTRS.
Design/methodology/approach
Specifically, the authors first present the calculation method of the conditional probability and discuss the loss functions of DTRS with HFL element (HFLE), along with some associated properties being investigated in detail. Further, three-way group decisions rules can be deduced, followed by the cost of every green supplier candidate. Thus, based on these discussions, a novel green supplier selection DTRS model that combines multi-criteria group decision-making (MCGDM) and HFLTS is designed.
Findings
A numerical example of green supplier selection, the comparative analysis and associated discussions are conducted to illustrate the applicability and novelty of the presented model.
Practical implications
The selection of green supplier has played a critically strategic role in sustainable enterprise development due to continuous environmental concerns. This paper offers an insight for companies to select green supplier selection from the perspective of three-way group decisions.
Originality/value
This paper uses three-way decisions to address green supplier selection in the HFL context, which is considered as a MCGDM issue.
Details
Keywords
Animesh Biswas and Biswajit Sarkar
The purpose of this paper is to develop a methodology based on TODIM (an acronym in Portuguese for interactive and multicriteria decision-making) approach for the selection of the…
Abstract
Purpose
The purpose of this paper is to develop a methodology based on TODIM (an acronym in Portuguese for interactive and multicriteria decision-making) approach for the selection of the best alternative in the context of multi criteria group decision-making (MCGDM) problems under possibilistic uncertainty in interval-valued Pythagorean fuzzy (IVPF) environment.
Design/methodology/approach
In this paper, IVPF-TODIM method is proposed. Some new point operator-based similarity measures (POSMs) for IVPF sets (IVPFSs) are introduced which have the capability to reduce the degree of uncertainty of the elements in the universe of discourse corresponding to IVPFS. Then the newly defined POSMs are used to compute the measure of relative dominance of each alternative over other alternatives in the IVPF-TODIM context. Finally, generalized mean aggregation operator is used to find the best alternative.
Findings
As the TODIM method is used to solve the MCGDM problems under uncertainty, POSMs are developed by using three parameters which can control the effect of decision-makers’ psychological perception under risk.
Research limitations/implications
The decision values are used in IVPF numbers (IVPFNs) format.
Practical implications
The proposed method is capable to solve real-life MCGDM problems with not only IVPFNs format but also with interval-valued intuitionistic fuzzy numbers.
Originality/value
As per authors’ concern, no approach using TODIM with IVPFNs is found in literature to solve MCGDM problems under uncertainty. The final judgment values of alternatives using the extended TODIM methodology are highly corroborate in compare to the results of existing methods, which proves its great potentiality in solving MCGDM problems under risk.
Details
Keywords
Yujia Liu, Changyong Liang, Jian Wu, Hemant Jain and Dongxiao Gu
Complex cost structures and multiple conflicting objectives make selecting an appropriate cloud service difficult. The purpose of this study is to propose a novel group consensus…
Abstract
Purpose
Complex cost structures and multiple conflicting objectives make selecting an appropriate cloud service difficult. The purpose of this study is to propose a novel group consensus decision making method for cloud services selection with knowledge deficit by trust functions.
Design/methodology/approach
This article proposes a knowledge deficit-based multi-criteria group decision-making (MCGDM) method for cloud-service selection based on trust functions. Firstly, the concept of trust functions and a ranking method is developed to express the decision-making opinions. Secondly, a novel 3D normalized trust degree (NTD) is defined to measure the consensus levels. Thirdly, a knowledge deficit-based interactive consensus model is proposed for the inconsistent experts to modify their decision opinions. Finally, a real case study has been carried out to illustrate the framework and compare it with other methods.
Findings
The proposed method is practical and effective which is verified by the real case study. Knowledge deficit is an important concept in cloud service selection which is verified by the comparison of the proposed recommended mechanism based on KDD with the conventional recommended mechanism based on average value. A 3D NTD which considers three values (trust, not trust and knowledge deficit) is defined to measure the consensus levels. A knowledge deficit-based interactive consensus model is proposed to help decision-makers reach group consensus. The proposed group consensus model enables the inconsistent decision-makers to accept the revised opinions of those with less knowledge deficit, rather than accepting the recommended opinions averagely.
Originality/value
The proposed a knowledge deficit-based MCGDM cloud service selection method considers group consensus in cloud service selection. The concept of knowledge deficit is considered in modeling the group consensus measuring and reaching method.
Details
Keywords
Sandang Guo, Qian Li and Yaqian Jing
The existing consensus reaching mechanisms ignore the influence of social triangle structure on the decision-makers’ (DMs') weights, and the consensus reaching process (CRP) fails…
Abstract
Purpose
The existing consensus reaching mechanisms ignore the influence of social triangle structure on the decision-makers’ (DMs') weights, and the consensus reaching process (CRP) fails to fully reflect the DMs' subjectivity and can be time consuming and costly. To solve these issues, a novel CRP for multi-criteria group decision-making (MCGDM) problems with intuitionistic grey linguistic numbers (IGLNs) is proposed in this paper.
Design/methodology/approach
First, a weight calculation method is proposed by analysing the triangle structure of DMs' social network and scale of adjacent nodes. Then, a consensus degree index based on three-level polygon area is defined and applied to identify the inconsistent DMs. Finally, the feedback mechanism based on particle swarm optimisation (PSO) algorithm under grey linguistic environment is developed, where subjective trust relationships in social network is utilised to determine the adjustment coefficient.
Findings
The advantages of the proposed method are highlighted by two practical applications of the evaluation of tunnel construction method and the selection of a hotel for the centralised isolation. Comparision analysis and numerical simulation are performed to reveal the effectiveness and applicability of the method.
Practical implications
The proposed model can not only reflect the effect of triangle structure in social network on DMs' weights, but also reduce the time and cost of decision-making.
Originality/value
The main contribution of this paper is to propose a new MCGDM model based on intuitionistic grey linguistic numbers, which can handle the problem of inconsistency of information more effectively.
Details
Keywords
Sandang Guo, Liuzhen Guan, Qian Li and Jing Jia
Considering the bounded confidence of decision-makers (DMs), a new grey multi-criteria group consensus decision-making (GMCGCDM) model is established by using interval grey number…
Abstract
Purpose
Considering the bounded confidence of decision-makers (DMs), a new grey multi-criteria group consensus decision-making (GMCGCDM) model is established by using interval grey number (IGN), cobweb model, social network analysis (SNA) and consensus reaching process (CPR).
Design/methodology/approach
Firstly, the model analyzes the social relationship of DM under social networks and proposes a calculation method for DMs’ weights based on SNA. Secondly, the model defines a cobweb model to consider the preferences of decision-making alternatives in the decision-making process. The consensus degree is calculated by the area surrounded by the connections between each index value of DMs and the group. Then, the model coordinates the different opinions of various DMs to reduce the degree of bias of each DM and designs a consensus feedback mechanism based on bounded confidence to guide DMs to reach consensus.
Findings
The advantage of the proposed method is to highlight the practical application, taking the selection of low-carbon suppliers in the context of dual carbon as an example. Comparison analysis is performed to reveal the interpretability and applicability of the method.
Originality/value
The main contribution of this paper is to propose a new GMCGCDM model, which can not only expand the calculation method of DM’s weight and consensus degree but also reduce the time and cost of decision-making.