Search results

1 – 10 of 78
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 13 January 2012

M.M. Savalani, L. Hao, P.M. Dickens, Y. Zhang, K.E. Tanner and R.A. Harris

Hydroxyapatite‐polymer composite materials are being researched for the development of low‐load bearing implants because of their bioactive and osteoconductive properties, while…

1298

Abstract

Purpose

Hydroxyapatite‐polymer composite materials are being researched for the development of low‐load bearing implants because of their bioactive and osteoconductive properties, while avoiding modulus mismatch found in homogenous materials. For the direct production of hydroxyapatite‐polymer composite implants, selective laser sintering (SLS) has been used and various parameters and their effects on the physical properties (micro and macro morphologies) have been investigated. The purpose of this paper is to identify the most influential parameters on the micro and macro pore morphologies of sintered hydroxyapatite‐polymer composites.

Design/methodology/approach

A two‐level full factorial experiment was designed to evaluate the effects of the various processing parameters and their effects on the physical properties, including open porosity, average pore width and the percentage of pores which could enable potential bone regeneration and ingrowth of the sintered parts. The density of the sintered parts was measured by weight and volume; optical microscopy combined with the interception method was used to determine the average pore size and proportion of pores suitable to enable bone regeneration.

Findings

It was found that the effect of build layer thickness was the most influential parameter with respect to physical and pore morphology features. Consequently, it is found that the energy density equation with the layer thickness parameter provides a better estimation of part porosity of composite structures than the energy density equation without the layer thickness parameter. However, further work needs to be conducted to overcome the existing error of variance.

Originality/value

This work is the first step in identifying the most significant SLS parameters and their effects on the porosity, micro and macro pore morphologies of the fabricated parts. This is an important step in the further development of implants which may be required.

Access Restricted. View access options
Article
Publication date: 4 October 2011

Chi Chung Ng, Monica Savalani and Hau Chung Man

Magnesium has been considered as a new generation of bioactive and biodegradable implant for orthopaedic applications because of its prominent properties including superior…

2355

Abstract

Purpose

Magnesium has been considered as a new generation of bioactive and biodegradable implant for orthopaedic applications because of its prominent properties including superior biocompatibility, biodegradability and proper mechanical stiffness. For the direct production of custom biomedical implants, selective laser melting (SLM) has been investigated to fabricate pure magnesium and its resultant properties. The primary objective of this paper is to identify the most appropriate mode of irradiation for the melting of pure magnesium powders due to its reactive properties. This study focuses on investigating the interaction between the laser source and the magnesium powders by varying the SLM parameters of the laser power and scan speed under continuous or pulse mode conditions.

Design/methodology/approach

Single magnesium tracks were fabricated under different processing conditions using SLM, in order to evaluate the effects of processing parameters on the dimension and surface morphology of the achieved parts. The digital images of the tracks were used to analyze the geometrical features in terms of melting width and depth. In addition, scanning electron images were also studied to understanding the selective melting mechanism.

Findings

Magnesium tracks were successfully fabricated using SLM. Results showed that the dimension, surface morphology and the oxygen pick‐up of the laser‐melted tracks are strongly dependent on the mode of irradiation and processing parameters.

Originality/value

This work is a first step towards magnesium fabrication using SLM technique. The experimental results represent an important step in understanding the magnesium under an Nd:YAG laser irradiation, which provides the basis of behavior for follow‐on research and experiments.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 18 January 2016

Monica Mahesh Savalani and Jorge Martinez Pizarro

The purpose of this paper is to investigate the effect of preheat and layer thickness in selective laser melting (SLM) of magnesium using pulse mode. Magnesium has been considered…

2208

Abstract

Purpose

The purpose of this paper is to investigate the effect of preheat and layer thickness in selective laser melting (SLM) of magnesium using pulse mode. Magnesium has been considered as a new generation of implant materials which are bioactive and biodegradable for orthopaedic applications.

Design/methodology/approach

To produce optimal single magnesium tracks to compare the effect of layer thickness and preheat, different laser parameters were investigated. The analysis was made based on digital and electronic microscope images and mechanical measurements.

Findings

Improvements in the magnesium tracks due to preheating were successfully achieved. The analysis shows better bonding to the surface. The preheated tracks present an improvement in quality surface: smoother and flatter surfaces are discovered for the low layer thicknesses. When the thickness increases, the surface was disrupted and presented high surface roughness values. These were attributed to the Marangoni convection.

Originality/value

This study continues valuing the fabrication of magnesium with SLM. It shows the improvements of preheat and effect of different layer thicknesses on the part properties.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 11 March 2014

A. Garg, K. Tai and M.M. Savalani

The empirical modelling of major rapid prototyping (RP) processes such as fused deposition modelling (FDM), selective laser sintering (SLS) and stereolithography (SL) has…

2081

Abstract

Purpose

The empirical modelling of major rapid prototyping (RP) processes such as fused deposition modelling (FDM), selective laser sintering (SLS) and stereolithography (SL) has attracted the attention of researchers in view of their contribution to the overall cost of the product. Empirical modelling techniques such as artificial neural network (ANN) and regression analysis have been paid considerable attention. In this paper, a powerful modelling technique using genetic programming (GP) for modelling the FDM process is introduced and the issues related to the empirical modelling of RP processes are discussed. The present work aims to investigate the performance of various potential empirical modelling techniques so that the choice of an appropriate modelling technique for a given RP process can be made. The paper aims to discuss these issues.

Design/methodology/approach

Apart from the study of applications of empirical modelling techniques on RP processes, a multigene GP is applied to predict the compressive strength of a FDM part based on five given input process parameters. The parameter setting for GP is determined using trial and experimental runs. The performance of the GP model is compared to those of neural networks and regression analysis.

Findings

The GP approach provides a model in the form of a mathematical equation reflecting the relationship between the compressive strength and five given input parameters. The performance of ANN is found to be better than those of GP and regression, showing the effectiveness of ANN in predicting the performance characteristics of the FDM part. The GP is able to identify the significant input parameters that comply with those of an earlier study. The distinct advantages of GP as compared to ANN and regression are highlighted. Several vital issues related to the empirical modelling of RP processes are also highlighted in the end.

Originality/value

For the first time, a review of the application of empirical modelling techniques on RP processes is undertaken and a new GP method for modelling the FDM process is introduced. The performance of potential empirical modelling techniques for modelling RP processes is evaluated. This is an important step in modernising the era of empirical modelling of RP processes.

Access Restricted. View access options
Article
Publication date: 1 January 2006

I. Gibson, L.K. Cheung, S.P. Chow, W.L. Cheung, S.L. Beh, M. Savalani and S.H. Lee

This paper aims to illustrate a number of instances where RP and associated technology has been successfully used for medical applications.

4756

Abstract

Purpose

This paper aims to illustrate a number of instances where RP and associated technology has been successfully used for medical applications.

Design/methodology/approach

A number of medical case studies are presented, illustrating different uses of RP technology. These studies have been analysed in terms of how the technology has been applied in order to solve related medical problems.

Findings

It was found that RP has been helpful in a number of ways to solve medical problems. However, the technology has numerous limitations that have been analysed in order to establish how the technology should develop in the future.

Practical implications

RP can help solve medical problems, but must evolve if it is to be used more widespread in this field.

Originality/value

This paper has shown a number of new applications for RP, providing a holistic understanding how the technology can solve medical problems. It also identifies a number of ways in which the technology can improve in order to better solve such problems.

Details

Rapid Prototyping Journal, vol. 12 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 23 October 2021

Fangfang Sun, Tianze Wang and Yong Yang

Rapid prototyping (RP) technology is widely used in many fields in recent years. Bone tissue engineering (TE) is an interdisciplinary field involving life sciences, engineering…

326

Abstract

Purpose

Rapid prototyping (RP) technology is widely used in many fields in recent years. Bone tissue engineering (TE) is an interdisciplinary field involving life sciences, engineering and materials science. Hydroxyapatite (HAp) are similar to natural bone and it has been extensively studied due to its excellent biocompatibility and osteoconductivity. This paper aims to review nanoscaled HAp-based scaffolds with high porosity fabricated by various RP methods for bone regeneration.

Design/methodology/approach

The review focused on the fabrication methods of HAp composite scaffolds through RP techniques. The paper summarized the evaluation of these scaffolds on the basis of their biocompatibility and biodegradability through in vitro and in vivo tests. Finally, a summary and perspectives on this active area of research are provided.

Findings

HAp composite scaffold fabricated by RP methods has been widely used in bone TE and it has been deeply studied by researchers during the past two decades. However, its brittleness and difficulty in processing have largely limited its wide application in TE. Therefore, the formability of HAp combined with biocompatible organic materials and fabrication techniques could be effectively enhanced, and it can be used in bone TE applications finally.

Originality/value

This review paper presented a comprehensive study of the various types of HAp composite scaffold fabricated by RP technologies and introduced their potential application in bone TE, as well as future roadmap and perspective.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 19 December 2018

Hui Zhang, Yanling Guo, Kaiyi Jiang, David Bourell, Jian Li and Yueqiang Yu

A new kind of polymer mixture (co-PA-PES) was prepared in different mass ratios, by mixing polyether sulfone hot-melt adhesive (PES-HmA) and copolyamide B249 (PA-B249). This study…

174

Abstract

Purpose

A new kind of polymer mixture (co-PA-PES) was prepared in different mass ratios, by mixing polyether sulfone hot-melt adhesive (PES-HmA) and copolyamide B249 (PA-B249). This study aims to investigate its characteristics of laser sintering and get the optimal process parameters.

Design/methodology/approach

The effect of mass ratio of co-PA-PES on thermal behavior was analyzed using a simultaneous thermal analyzer, and the density and mechanical properties of sintered parts were tested to evaluate the performance of the polymeric system. Scanning electron microscopy and Fourier transform infrared spectroscopy were performed to characterize the microstructure and binding mechanism of sintered co-PA-PES parts. Specifically, mechanical properties of the mixture with 20 Wt.% PA-B249 were optimized based on a design of experiment methodology, along with the restriction of maximum absorbable laser energy density.

Findings

Liquid phase fusion was considered as the main sintering mechanism for co-PA-PES, and mechanical interlocking was the dominant binding mechanism. The effects of mass ratios of this material on the thermal properties, density and mechanical properties were obtained via data results. Additionally, compared to neat PES-HmA, co-20 Wt.% PA-PES showed a 71.7 per cent increase in tensile strength, 24.4 per cent increase in flexural strength and 102.1per cent increase in impact strength.

Originality/value

This paper proposed a new kind of polymer mixture as the feedstock for laser sintering with the advantages of low price and easy processing. The filler of PA-B249 effectively improved the performance of the polymer mixture, including but not limited to mechanical properties.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

720

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Access Restricted. View access options
Article
Publication date: 17 August 2020

Juan Sebastian Gomez Bonilla, Maximilian Alexander Dechet, Jochen Schmidt, Wolfgang Peukert and Andreas Bück

The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size…

365

Abstract

Purpose

The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size, shape and flowability, as well as on the yield of process.

Design/methodology/approach

This study focuses on the rounding of commercial high-density polyethylene polymer particles in two different downer reactor designs using heated walls (indirect heating) and preheated carrier gas (direct heating). Powder bulk properties of the product obtained from both designs are characterized and compared.

Findings

Particle rounding with direct heating leads to a considerable increase in process yield and a reduction in powder agglomeration compared to the design with indirect heating. This subsequently leads to higher powder flowability. In terms of shape, indirect heating yields not only particles with higher sphericity but also entails substantial agglomeration of the rounded particles.

Originality/value

Shape modification via thermal rounding is the decisive step for the success of a top-down process chain for selective laser sintering powders with excellent flowability, starting with polymer particles from comminution. This report provides new information on the influence of the heating mode (direct/indirect) on the performance of the rounding process and particle properties.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 8 February 2022

Hamaid Mahmood Khan, Saad Waqar and Ebubekir Koç

The current investigation aims at observing the influence of the cooling channel on the thermal and residual stress behavior of the selective laser melting (SLM)316L uni-layer…

429

Abstract

Purpose

The current investigation aims at observing the influence of the cooling channel on the thermal and residual stress behavior of the selective laser melting (SLM)316L uni-layer thermo-mechanical model.

Design/methodology/approach

On a thermo-mechanical model with a cooling channel, the effect of scanning direction, parallel and perpendicular and scan spacing was simulated. The effect of underlying solid and powder bases was evaluated on residual stress profile and thermal variables at various locations.

Findings

The high heat dissipation of solid base due to high cooling rates and steep thermal gradients can reciprocate with smaller melt pool temperature and melt pool size. Given the same scan spacing, residual stresses were found lower when laser scanning was perpendicular to the cooling channel. Moreover, large scan spacing was found to increase residual stresses.

Originality/value

Cooling channels are increasingly being used in additive manufacturing; however, their effect on the residual stress behavior of the SLM component is not extensively studied. This research can serve as a foundation for further inquiries into the impact of base material design such as cooling channels on manufactured components using SLM.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 78
Per page
102050