Qiang Pu, Farhad Aalizadeh, Darya Aghamolaei, Mojtaba Masoumnezhad, Alireza Rahimi and Abbas Kasaeipoor
This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method.
Abstract
Purpose
This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method.
Design/methodology/approach
The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is included with an internal active hollow with constant thermal boundary conditions at its walls and variable dimensions. It should be noted that the dimensions of the internal hollow will be determined by as aspect ratio.
Findings
The Rayleigh number, nanoparticle concentration and the aspect ratio are the governing parameters. The heat transfer performance of the cavity has direct relationship with the Rayleigh number and solid volume fraction of CuO-water nanofluid. Moreover, the configuration of the cavity is good controlling factor for changing the heat transfer performance and entropy generation.
Originality/value
The originality of this work is using double-MRT lattice Boltzmann method in simulating the free convection fluid flow and heat transfer.
Details
Keywords
Alireza Rahimi, Pouria Azarikhah, Abbas Kasaeipoor, Emad Hasani Malekshah and Lioua Kolsi
This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity.
Abstract
Purpose
This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity.
Design/methodology/approach
The cavity is filled with the CuO-water nanofluid. The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider Brownian motion. On the other hand, the effect of the shapes of nanoparticles on the thermal conductivity and related heat transfer rate is presented.
Findings
In the present investigation, the governing parameters are Rayleigh number, CuO nanoparticle concentration in pure water and the thermal arrangements of internal active fins and solid bodies. Impacts of these parameters on the nanofluid flow, heat transfer rate, total/local entropy generation and heatlines are presented. It is concluded that adding nanoparticles to the pure fluid has a significant positive influence on the heat transfer performance. In addition, the average Nusselt number and total entropy generation have direct a relationship with the Rayleigh number. The thermal arrangement of the internal bodies and fins is a good controlling tool to determine the desired magnitude of heat transfer rate.
Originality/value
The originality of this paper is to use the lattice Boltzmann method in simulating the nanofluid flow and heat transfer within a cavity included with internal active bodies and fins.
Details
Keywords
HamidReza KhakRah, Mehdi Mohammaei, Payam Hooshmand, Navid Bagheri and Emad Hasani Malekshah
The nanofluid flow and heat transfer within a heat exchanger, with different thermal arrangements of internal active bodies, are investigated.
Abstract
Purpose
The nanofluid flow and heat transfer within a heat exchanger, with different thermal arrangements of internal active bodies, are investigated.
Design/methodology/approach
For the numerical simulations, the lattice Boltzmann method is utilized. The KKL model is used to predict the dynamic viscosity of CuO-water nanofluid. Furthermore, the Brownian method is taken account using this model. The influence of shapes of nanoparticles on the heat transfer performance is considered.
Findings
The results show that the platelet nanoparticles render higher average Nusselt number showing better heat transfer performance. In order to perform comprehensive analysis, the heatline visualization, local and total entropy generation, local and average Nusselt variation are employed.
Originality/value
The originality of this work is carrying out a comprehensive investigation of nanofluid flow and heat transfer during natural convection using lattice Boltzmann method and employing second law analysis and heatline visualization.
Details
Keywords
Alireza Rahimi, Hesam Bakhshi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah
The study aims to study the nanofluid flow and heat transfer in a T-shaped heat exchanger. For the numerical simulations, the lattice Boltzmann method is used.
Abstract
Purpose
The study aims to study the nanofluid flow and heat transfer in a T-shaped heat exchanger. For the numerical simulations, the lattice Boltzmann method is used.
Design/methodology/approach
The end of each branch of the heat exchanger is considered a curve wall that requires special thermal and physical boundary conditions. To improve the thermal performance of the heat exchanger, the CuO–water nanofluid, which has better heat transfer performance with respect to pure water, is used. The dynamic viscosity of nanofluid is estimated by means of KKL model. Several active fins and solid bodies are implanted within the heat exchanger with different thermal arrangements.
Findings
In the present work, different approaches such as heatline visualization, local and total entropy generation analysis, local and total Nusselt variation are used to detect the impact of different considered parameters such as Rayleigh number (103 < Ra < 106), solid volume fraction of nanofluid (φ = 0,0.01,0.02,0.03 and 0.04 vol. per cent) and thermal arrangements of internal bodies (Case A, Case B, Case C and Case D) on the fluid flow and heat transfer performance.
Originality/value
The originality of this work is to analyze the two-dimensional natural convection and entropy generation using lattice Boltzmann method.
Details
Keywords
Yongsheng Rao, Zehui Shao, Alireza Rahimi, Abbas Kasaeipoor and Emad Hasani Malekshah
A comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is…
Abstract
Purpose
A comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is filled with CuO–water nanofluid.
Design/methodology/approach
The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider the Brownian motion. On the other hand, the influence of nanoparticles’ shapes on the heat transfer rate is considered in the simulations. The channel is included with the injection pipes which are modeled as active bodies with constant temperature in the 2D simulations.
Findings
The Rayleigh number, nanoparticle concentration and the thermal arrangements of internal pipes are the governing parameters. The hydrothermal aspects of natural convection are investigation using different approaches such as average Nusselt number, total entropy generation, Bejan number, streamlines, temperature fields, local heat transfer irreversibility, local fluid friction irreversibility and heatlines.
Originality/value
The originality of this work is investigation of fluid flow, heat transfer, entropy generation and heatline visualization within a nanofluid-filled channel using a finite volume method.
Details
Keywords
Qingang Xiong, Arash Khosravi, Narjes Nabipour, Mohammad Hossein Doranehgard, Aida Sabaghmoghadam and David Ross
This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.
Abstract
Purpose
This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.
Design/methodology/approach
The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters.
Findings
The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented.
Originality/value
The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.
Details
Keywords
Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah
The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant…
Abstract
Purpose
The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant industrial applications.
Design/methodology/approach
Geometries of the enclosures have considerable influences on the heat transfer which will be important in energy consumption. The most useful geometries in engineering fields are treated in this literature, and their effects on the fluid flow and heat transfer are presented.
Findings
A great variety of geometries included with different physical and thermal boundary conditions, heat sources and fluid/nanofluid media are analyzed. Moreover, the results of different types of methods including experimental, analytical and numerical are obtained. Different natures of natural convection phenomenon including laminar, steady-state and transient, turbulent are covered. Overall, the present review enhances the insight of researchers into choosing the best geometry for thermal process.
Originality/value
A comprehensive review on the most practical geometries in the industrial application is performed.
Details
Keywords
Alireza Rahimi, Aravindhan Surendar, Aygul Z. Ibatova, Abbas Kasaeipoor and Emad Hasani Malekshah
This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made…
Abstract
Purpose
This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene.
Design/methodology/approach
The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations.
Findings
Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results.
Originality/value
The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.
Details
Keywords
Payam Hooshmand, Mohammad Bahrami, Navid Bagheri, Meysam Jamshidian and Emad Hasani Malekshah
This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel.
Abstract
Purpose
This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel.
Design/methodology/approach
The channel is filled with the CuO-water nanofluid. The KKL model is used to estimate the dynamic viscosity and considering Brownian motion. On the other hand, the influence of CuO nanoparticles’ shapes on the heat transfer rate is taken account in the simulations. The channel is included with several active pipes with hot and cold temperatures. Furthermore, the external curved and sinusoidal walls have cold and hot temperatures, respectively.
Findings
Three different tilt angles are considered with similar boundary and operating conditions. The Rayleigh numbers, solid volume fraction of CuO nanoparticles in the pure water and the tilt angles are the governing parameters. Different cases studies, such as streamlines, heat transfer rate, local and total entropy generation and heatlines, are analysed under influences of these governing parameters.
Originality/value
The originality of this work is investigation of fluid flow, heat transfer and entropy generation within a nanofluid filled channel using FVM.