M. Gnaneswara Reddy, P. Vijaya Kumari, G. Upender Reddy, K. Ganesh Kumar and B. C. Prasannakumara
The main theme of this paper is the effect of viscous dissipation Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle.
Abstract
Purpose
The main theme of this paper is the effect of viscous dissipation Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle.
Design/methodology/approach
The governing partial differential equations of the current problem are diminished into a set of ordinary differential equations using requisite similarity transformations. Energy equation is extended by using Cattaneo–Christov heat flux model with variable thermal conductivity. By applying boundary layer approximation system of equations is framed.
Findings
Convective condition is also introduced in this analysis. Obtained set of similarity equations are then solved with the help of efficient numerical method four–fifth-order RKF-45.
Originality/value
The outcomes of various pertinent parameters on the velocity, temperature distributions are analysed by using portraits.
Details
Keywords
Ahmed Zeeshan, Zaheer Asghar and Amad ur Rehaman
The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical…
Abstract
Purpose
The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical reaction and magnetohydrodynamics through the porous medium. The main focus is on flow efficiency quantities such as pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall. This initiative is to bridge the existing gap in the available literature.
Design/methodology/approach
The governing equations of the problem are mathematically formulated and subsequently simplified for sensitivity analysis under the assumptions of a long wavelength and a small Reynolds number. The simplified equations take the form of coupled nonlinear differential equations, which are solved using the built-in Matlab routine bvp4c. The response surface methodology and artificial neural networks are used to develop the empirical model for pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall.
Findings
The empirical model demonstrates an excellent fit with a coefficient of determination reaching 100% for responses, frictional forces on the upper wall and frictional forces on the lower wall and 99.99% for response, for pressure rise per wavelength. It is revealed through the sensitivity analysis that pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall are most sensitive to the permeability parameter at all levels.
Originality/value
The objective of this study is to use artificial neural networks simulation and analyze the sensitivity of electroosmotic peristaltic motion of non-Newtonian fluid with the effect of chemical reaction.
Details
Keywords
O.K. Koriko, I.L. Animasaun, M. Gnaneswara Reddy and N. Sandeep
The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm…
Abstract
Purpose
The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow.
Design/methodology/approach
The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem.
Findings
A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M.
Originality/value
Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.
Details
Keywords
M. Gnaneswara Reddy, P. Vijayakumari, L. Krishna, K. Ganesh Kumar and B.C Prasannakumara
In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear…
Abstract
Purpose
In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear thermal radiation and convective conditions.
Design/methodology/approach
Infinite shear rate viscosity impacts are invoiced in the modeling. The heat and mass transport characteristics are explored by employing the effects of a magnetic field, thermal nonlinear radiation and buoyancy effects. Rudimentary governing partial differential equations (PDEs) are represented and are transformed into ordinary differential equations by the use of similarity transformation. The nonlinear ordinary differential equations (ODEs), along with the boundary conditions, are resolved with the aid of a Runge-Kutta-Fehlberg scheme (RKFS) based on the shooting technique.
Findings
The impact of sundry parameters like the viscosity ratio parameter (β*), nonlinear convection parameters due to temperature and concentration (βT, βC), mixed convection parameter (α), Hartmann number (M2), Weissenberg number (We), nonlinear radiation parameter (NR), and the Prandtl number (Pr) on the velocity, temperature and the concentration distributions are examined. Furthermore, the impacts of important variables on the skin friction, Nusselt number and the Sherwood number have been scrutinized through tables and graphical plots.
Originality/value
The velocity distribution is suppressed by greater values of the Hartmann number. The velocity components in the tangential and axial directions of the fluid are raised with the viscosity ratio parameter and the tangential slip parameter, but these components are reduced with concentration to thermal buoyancy forces ratio and stretching sheet ratio.
Details
Keywords
Meenakumari Ramamoorthy and Lakshminarayana Pallavarapu
The present work explores the influence of Hall and Ohmic heating effects on the convective peristaltic flow of a conducting Jeffrey nanofluid in an inclined porous asymmetric…
Abstract
Purpose
The present work explores the influence of Hall and Ohmic heating effects on the convective peristaltic flow of a conducting Jeffrey nanofluid in an inclined porous asymmetric channel with slip. Also, the authors investigated the impact of viscous dissipation, thermal radiation, heat generation/absorption and cross diffusion effects on the flow. Peristaltic flow has many industrial and physiological applications and most of the biofluids show the non-Newtonian fluid behaviour. Further, in a living body, several biofluids flow through different kinds of systems that are not symmetric, horizontal or vertical. The purpose of this paper is to address these issues.
Design/methodology/approach
The authors considered the flow of Jeffrey fluid which is generated by a sinusoidal wave propagating on the walls of an inclined asymmetric channel. The flow model is developed from the fixed frame to the wave frame. Finally, yield the nonlinear governing equations by applying the non-dimensional quantities with the assumptions of lengthy wave and negligible Reynolds number. The exact solution has been computed for the velocity and pressure gradient. The solutions for temperature and concentration are obtained by the regular perturbation technique.
Findings
Graphical analysis is made for the present results for different values of emerging parameters and explained clearly. It is noticed that the magnetic field enriches the temperature where it drops the fluid velocity. This work describes that the temperature field is decreasing due to the radiation but it is a rising function of temperature slip parameter. The temperature profile declines for growing values of the Hall parameter. The flow velocity diminishes for boosting values of the Darcy parameter. Further, the authors perceived that the concentration field reduces for large values of the chemical reaction parameter.
Originality/value
The authors validated and compared the results with the existing literature. This investigation will help to study some physiological systems, and heat transfer in peristaltic transport plays key role in medical treatments, so we ensure that these results are applicable in medical treatments like cancer therapy, drug delivery, etc.
Details
Keywords
Ali J. Chamkha, B. Mallikarjuna, R. Bhuvana Vijaya and D.R.V. Prasada Rao
The purpose of this paper is to study the effects of Soret and Dufour effects on convective heat and mass transfer flow through a porous medium in a rectangular duct in the…
Abstract
Purpose
The purpose of this paper is to study the effects of Soret and Dufour effects on convective heat and mass transfer flow through a porous medium in a rectangular duct in the presence of inclined magnetic field.
Design/methodology/approach
Using the non-dimensional variables, the governing equations have been transformed into a set of differential equations, which are non-linear and cannot be solved analytically, therefore finite element method has been used for solving the governing equations.
Findings
The influence of thermo-diffusion, diffusion thermo, radiation, dissipation, heat sources and the inclined magnetic field on all the flow, heat and mass transfer characteristics has been found to be significant.
Originality/value
The problem is relatively original as it combines many effects as Soret and Dufour effects and chemical reaction under inclined magnetic field.
Details
Keywords
A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan
The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…
Abstract
Purpose
The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.
Design/methodology/approach
A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.
Findings
The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.
Originality/value
Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.
Details
Keywords
Naeem Ullah, Sohail Nadeem, Luthais McCash, Anber Saleem and Alibek Issakhov
This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to…
Abstract
Purpose
This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to generate the internal flow. In further assumptions, the left/right wall are kept cool, while the upper and lower remaining portions are insulated. Free convection prevails in the regime because of thermal difference in-between the lower warmer and upper colder region.
Design/methodology/approach
The physical setup owns mathematical framework in-terms of non-linear partial differential equations. For the solution purpose of the differential system, finite volume method is adopted. The interesting features of the flow along with thermal transportation involve both translational and rotational movement of fluid particles.
Findings
Performing the simulations towards flow controlling variables the outputs are put together in contour maps and line graphs. It is indicated that the variations in flow profile mass concentration and temperature field augments at higher Rayleigh parameter because of stronger buoyancy effects. Higher viscosity coefficient implies decrease in flow and thermal transportation. Further, the average heat transfer rate also grows by increasing both the Rayleigh parameter and heated source length.
Originality/value
To the best of the authors’ knowledge, no such study has been addressed yet. Further, the results are validated by comparing with previously published work.
Details
Keywords
U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden
The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…
Abstract
Purpose
The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.
Design/methodology/approach
The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.
Findings
The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.
Originality/value
The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.
Details
Keywords
Gladys Tharapatla, Pamula Rajakumari and Ramana G.V. Reddy
This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical…
Abstract
Purpose
This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical approach.
Design/methodology/approach
The flow equations are set up with the non-linear free convective term, thermal radiation, nanofluids and Soret–Dufour effects. Thus, the non-linear partial differential equations of the flow analysis were simplified by using similarity transformation to obtain non-linear coupled equations. The set of simplified equations are solved by using the spectral homotopy analysis method (SHAM) and the spectral relaxation method (SRM). SHAM uses the approach of Chebyshev pseudospectral alongside the homotopy analysis. The SRM uses the concept of Gauss-Seidel techniques to the linear system of equations.
Findings
Findings revealed that a large value of the non-linear convective parameters for both temperature and concentration increases the velocity profile. A large value of the Williamson term is detected to elevate the velocity plot, whereas the Casson parameter degenerates the velocity profile. The thermal radiation was found to elevate both velocity and temperature as its value increases. The imposed magnetic field was found to slow down the fluid velocity by originating the Lorentz force.
Originality/value
The novelty of this paper is to explore the heat and mass transfer effects on MHD non-Newtonian fluids flow through an inclined thermally-stratified porous medium. The model is formulated in an inclined plate and embedded in a thermally-stratified porous medium which to the best of the knowledge has not been explored before in literature. Two elegance spectral numerical techniques have been used in solving the modeled equations. Both SRM and SHAM were found to be accurate.