Najiyah Safwa Khashi'ie, Norihan Md Arifin, Natalia C. Rosca, Alin V. Rosca and Ioan Pop
The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable…
Abstract
Purpose
The purpose of this paper is to study the effects of thermal radiation and homogeneous-heterogeneous reactions in the three-dimensional hybrid nanofluid flow past a permeable stretching/shrinking sheet.
Design/methodology/approach
The combination of aluminum oxide (Al2O3) and copper (Cu) nanoparticles with total volumetric concentration is numerically analyzed using the existing correlations of hybrid nanofluid. With the consideration that both homogeneous and heterogeneous reactions are isothermal while the diffusion coefficients of both autocatalyst and reactant are same, the governing model is simplified into a set of differential (similarity) equations.
Findings
Using the bvp4c solver, dual solutions are presented, and the stability analysis certifies the physical/real solution. The findings show that the suction parameter is requisite to induce the steady solution for shrinking parameter. Besides, the fluid concentration owing to the shrinking sheet is diminished with the addition of surface reaction.
Originality/value
The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.
Details
Keywords
To achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau…
Abstract
Purpose
To achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau nanofluid past a vertical plate with the periodic variations of surface temperature and the concentration of species. Buongiorno model is considered for nanofluid transport, which includes the relative slip mechanisms, Brownian motion and thermophoresis.
Design/methodology/approach
The governing equations are non-dimensionalized using suitable transformations, further reduced to non-similar form using stream function formulation and solved by local non-similarity method with homotopy analysis method. The numerical computations are validated and verified by comparing with earlier published results and are found to be in good agreement.
Findings
The effects of varying the physical parameters such as Prandtl number, Schmidt number, Weissenberg number, thermophoresis parameter, Brownian motion parameter and buoyancy ratio parameter on velocity, temperature and species concentration are discussed and presented through graphs. The results explored that the velocity of shear thinning fluid is raised by increasing the Weissenberg number, while contrary response is seen for the shear thickening fluid. It is also found that heat transfer in Cattaneo–Christov heat conduction model is less than that in Fourier’s heat conduction model. Furthermore, the temperature and thermal boundary layer thickness expand with the increase in thermophoresis and Brownian motion parameter, whereas nanoparticle volume fraction increases with increase in thermophoresis parameter, but reverse trend is observed with increase in Brownian motion parameter.
Originality/value
The present investigation is relatively original as very little research has been reported on Carreau nanofluids under the effect of Cattaneo–Christov heat flux model.
Details
Keywords
M. Kothandapani and V. Pushparaj
This paper aims to investigate the consequence of the combined impacts of an induced magnetic field and thermal radiation on peristaltic transport of a Carreau nanofluid in a…
Abstract
Purpose
This paper aims to investigate the consequence of the combined impacts of an induced magnetic field and thermal radiation on peristaltic transport of a Carreau nanofluid in a vertical tapered asymmetric channel. The model applied for the nanofluid comprises the effects of Brownian motion and thermophoresis.
Design/methodology/approach
The governing equations have been simplified under the widespread assumption of long-wavelength and low-Reynolds number approximations. The reduced coupled nonlinear equations of momentum and magnetic force function have also been solved analytically using the regular perturbation method.
Findings
The physical features of emerging parameters have been discussed by drawing the graphs of velocity, temperature, nanoparticle concentration profile, magnetic force function, current density, heat transfer coefficient and stream function. It has been realized that the magnetic force function is increased with the increase of Hartmann number, magnetic Reynolds number and mean flow rate.
Originality/value
It may be first paper in which the effect of induced magnetic field on peristaltic flow of non-Newtonian nanofluid in a tapered asymmetric channel has been studied.
Details
Keywords
Shafia Rana, M. Nawaz and Sayer Obaid Alharbi
The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant…
Abstract
Purpose
The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant role in industrial and engineering applications. For this, the authors dispersed trihybrid nanoparticles into the fluid to enhance the working fluid’s thermal enhancement.
Design/methodology/approach
The finite element method is a numerical scheme and is powerful in achieving convergent and grid-independent solutions compared with other numerical techniques. This method was initially assigned to structural problems. However, it is equally successful for computational fluid dynamics problems.
Findings
Wall shear stress has shown an increasing behavior as the intensity of the magnetic field is increased. Simulations have predicted that Ohmic heat in the case of trihybrid nanofluid (MoS2–Al2O3–Cu/C2H6O2) has the greatest value in comparison with mono and hybrid nanofluids. The most significant influence of chemical reaction on the concentration in tri-nanofluid is noted. This observation is pointed out for both types of chemical reaction (destructive or generative) parameters.
Originality/value
Through a literature survey, the authors analyzed that no one has yet to work on a 3D magnetohydrodynamics Carreau–Yasuda trihybrid nanofluid over a stretched sheet for improving heat and mass transfer over hybrid nanofluids. Herein, molybdenum disulfide (MoS2), aluminum oxide (Al2O3) and copper (Cu) nanoparticles are mixed in ethylene glycol (C2H6O2) to study the thermal enhancement and mass transport of their corresponding resultant mono (Cu/C2H6O2), hybrid (Al2O3–Cu/C2H6O2) and trihybrid (MoS2–Al2O3–Cu/C2H6O2) nanofluids.
Details
Keywords
Memoona Bibi, Muhammad Sohail and Rahila Naz
The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk…
Abstract
Purpose
The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk. The disk is moving with a constant uniform speed. Governing equations are obtained by using these assumptions in the form of partial differential equations with boundary conditions. These coupled, highly nonlinear equations are transformed into a coupled system of ordinary differential equations by engaging similarity transformation in the rotating frame of reference.
Design/methodology/approach
An efficient and reliable scheme, namely optimal homotopy asymptotic method, is used to obtain the solutions of the arising physical problem, which is further analyzed graphically. After computing the solutions of the arising problem, plots of velocities, temperature and concentration are discussed briefly.
Findings
It has been observed that dimensionless velocity reduced due to magnetic effect between the boundary layer and escalating values of the magnetic parameter upsurges the temperature and concentration profiles. Contour plots and numerical results are given for local numbers like skin friction coefficient, Nusselt number and Sherwood number.
Originality/value
The work presented in this manuscript is neither published nor submitted anywhere for the consideration/publications. It is a novel work.
Details
Keywords
Paluru Sreedevi, P. Sudarsana Reddy and Mikhail Sheremet
The purpose of this study is to analyze the impact of chemical reaction and thermal radiation on mixed convection flow, heat and mass transfer characteristics of nanofluid through…
Abstract
Purpose
The purpose of this study is to analyze the impact of chemical reaction and thermal radiation on mixed convection flow, heat and mass transfer characteristics of nanofluid through a wedge occupied with water–TiO2 and water–Al2O3 made nanofluid by considering velocity, temperature and concentration slip conditions in present investigation.
Design/methodology/approach
Using acceptable similarity transformations, the prevailing partial differential equations have been altered into non-linear ordinary differential equations and are demonstrated by the diverse thermophysical parameters. The mathematical model is solved numerically by implementing Galarkin finite element method and the outcomes are shown in tables and graphs.
Findings
The temperature and concentration fields impede as magnetic field parameter improves in both water–Al2O3 and water–TiO2 nanofluid. While there is contradiction in the velocity field as the values of magnetic field parameter rises in both nanofluids. The non-dimensional velocity rate, rate of temperature and rate of concentration rise with improved values of Weissenberg number.
Originality/value
Nanofluid flows past wedge-shaped geometries have gained much consideration because of their extensive range of applications in engineering and science, such as, magnetohydrodynamics, crude oil extraction, heat exchangers, aerodynamics and geothermal systems. Virtually, these types of nanofluid flows happen in ground water pollution, aerodynamics, retrieval of oil, packed bed reactors and geothermal industries.
Details
Keywords
M.Z. Kiyani, Tasawar Hayat, I. Ahmad and Ahmed Alsaedi
The purpose of this study is to analyze the entropy generation in magnetohydrodynamics stagnation point mixed convection flow of Carreau nanofluid through porous medium.
Abstract
Purpose
The purpose of this study is to analyze the entropy generation in magnetohydrodynamics stagnation point mixed convection flow of Carreau nanofluid through porous medium.
Design/methodology/approach
The system is solved using the homotopy scheme.
Findings
Minimizing radiation, magnetic, permeability and temperature difference parameters responds to minimizing entropy production.
Originality/value
To the best of the authors’ knowledge, no such analysis has yet been reported.
Details
Keywords
M. Gnaneswara Reddy, P. Vijayakumari, L. Krishna, K. Ganesh Kumar and B.C Prasannakumara
In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear…
Abstract
Purpose
In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear thermal radiation and convective conditions.
Design/methodology/approach
Infinite shear rate viscosity impacts are invoiced in the modeling. The heat and mass transport characteristics are explored by employing the effects of a magnetic field, thermal nonlinear radiation and buoyancy effects. Rudimentary governing partial differential equations (PDEs) are represented and are transformed into ordinary differential equations by the use of similarity transformation. The nonlinear ordinary differential equations (ODEs), along with the boundary conditions, are resolved with the aid of a Runge-Kutta-Fehlberg scheme (RKFS) based on the shooting technique.
Findings
The impact of sundry parameters like the viscosity ratio parameter (β*), nonlinear convection parameters due to temperature and concentration (βT, βC), mixed convection parameter (α), Hartmann number (M2), Weissenberg number (We), nonlinear radiation parameter (NR), and the Prandtl number (Pr) on the velocity, temperature and the concentration distributions are examined. Furthermore, the impacts of important variables on the skin friction, Nusselt number and the Sherwood number have been scrutinized through tables and graphical plots.
Originality/value
The velocity distribution is suppressed by greater values of the Hartmann number. The velocity components in the tangential and axial directions of the fluid are raised with the viscosity ratio parameter and the tangential slip parameter, but these components are reduced with concentration to thermal buoyancy forces ratio and stretching sheet ratio.
Details
Keywords
Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş
This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…
Abstract
Purpose
This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.
Design/methodology/approach
The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.
Findings
The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.
Originality/value
The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.
Details
Keywords
Abstract
Purpose
This paper aims to examine the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid along a stretching sheet. The thermal conductivity is taken in a temperature-dependent fashion. With the aid of Cattaneo–Christov double-diffusion theory, relaxation-retardation double-diffusion model is advanced, which considers not only the effect of relaxation time but also the influence of retardation time. Convective heat transfer is not ignored. Additionally, experiments verify that with sodium carboxymethylcellulose (CMC) solutions as base fluid, not only the flow curve conforms to Oldroyd-B model but also thermal conductivity decreases linearly with the increase of temperature.
Design/methodology/approach
The suitable pseudo similarity transformations are adopted to address partial differential equations to ordinary differential equations, which are computed analytically through homotopy analysis method (HAM).
Findings
It is worth noting that the increase of stagnation-point parameter diminishes momentum loss, so that the velocity enlarges, which makes boundary layer thickness thinner. With the increase of thermal retardation time parameter, the nanofluid temperature rises that implies heat penetration depth boosts up and the additional time required for nanofluid to heat transfer to surrounding nanoparticles is less, which is similar to the effects of concentration retardation time parameter on concentration field.
Originality/value
This paper aims to explore the unsteady stagnation-point flow, heat and mass transfer of upper-convected Oldroyd-B nanofluid with variable thermal conductivity and relaxation-retardation double-diffusion model.