Search results

1 – 10 of 136
Article
Publication date: 2 October 2017

Ruhaila Md Kasmani, S. Sivasankaran, M. Bhuvaneswari and Ahmed Kadhim Hussein

The purpose of this study is to investigate the Soret and Dufour effects on the double-diffusive convective boundary layer flow of a nanofluid past a moving wedge in the presence…

Abstract

Purpose

The purpose of this study is to investigate the Soret and Dufour effects on the double-diffusive convective boundary layer flow of a nanofluid past a moving wedge in the presence of suction.

Design/methodology/approach

The similarity transformation is applied to convert the governing nonlinear partial differential equations into ordinary differential equations. Then, they are solved numerically by the fourth-order Runge–Kutta–Gill method along with the shooting technique and the Newton–Raphson method. In addition, the ordinary differential equations are also analytically solved by the homotopy analysis method.

Findings

The results for dimensionless velocity, temperature, solutal concentration and nanoparticle volume fraction profiles, as well as local skin friction coefficient and local Nusselt and local Sherwood numbers are presented through the plots for various combinations of pertinent parameters involved in the study. The heat transfer rate increases on increasing the Soret parameter and it decreases on increasing the Dufour parameter. The mass transfer behaves oppositely to heat transfer.

Practical implication

In engineering applications, a wedge is used to hold objects in place, such as engine parts in the gate valves. A gate valve is the valve that opens by lifting a wedge-shaped disc to control the timing and quantity of fluid flow into an engine.

Originality/value

No such investigation is available in literature, and therefore, the results obtained are novel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

S. Sivasankaran, H. Niranjan and M. Bhuvaneswari

The purpose of this paper is to investigate the Newtonian heating and slip effect on mixed convective flow near a stagnation point in a porous medium with thermal radiation in the…

Abstract

Purpose

The purpose of this paper is to investigate the Newtonian heating and slip effect on mixed convective flow near a stagnation point in a porous medium with thermal radiation in the presence of magnetohydrodynamic (MHD), heat generation/absorption and chemical reaction.

Design/methodology/approach

The governing nonlinear coupled equations are converted into ordinary differential equations by similarity transformation. These equations are solved numerically using a Runge–Kutta–Fehlberg method with shooting technique and analytically using the homotopy analysis method (HAM).

Findings

The effects of different parameters on the fluid flow and heat transfer are investigated. It is found that the velocity and temperature profiles increase on an increase in the Biot number. The velocity and concentration profiles increase on decreasing the chemical reaction parameter.

Practical implications

This paper is helpful to the engineers and scientists in the field of thermal and manufacturing engineering.

Originality/value

The two-dimensional boundary layer flow over a vertical plate with slip and convective boundary conditions near the stagnation-point is analysed in the presence of magnetic field, radiation and heat generation/absorption. This paper is helpful to the engineers and scientists in the field of thermal and manufacturing engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

Huey Tyng Cheong, S. Sivasankaran and M. Bhuvaneswari

The purpose of this paper is to study natural convective flow and heat transfer in a sinusoidally heated wavy porous cavity in the presence of internal heat generation or…

Abstract

Purpose

The purpose of this paper is to study natural convective flow and heat transfer in a sinusoidally heated wavy porous cavity in the presence of internal heat generation or absorption.

Design/methodology/approach

Sinusoidal heating is applied on the vertical left wall of the cavity, whereas the wavy right wall is cooled at a constant temperature. The top and bottom walls are taken to be adiabatic. The Darcy model is adopted for fluid flow through the porous medium in the cavity. The governing equations and boundary conditions are solved using the finite difference method over a range of amplitudes and number of undulations of the wavy wall, Darcy–Rayleigh numbers and internal heat generation/absorption parameters.

Findings

The results are presented in the form of streamlines, isotherms and Nusselt numbers for different values of right wall waviness, Darcy–Rayleigh number and internal heat generation parameter. The flow field and temperature distribution in the cavity are affected by the waviness of the right wall. The wavy nature of the cavity also enhances the heat transfer into the system. The heat transfer rate in the cavity decreases with an increase in the internal heat generation/absorption parameter.

Research limitations/implications

The present investigation is conducted for steady, two-dimensional natural convective flow in a wavy cavity filled with Darcy porous medium. The waviness of the right wall is described by the amplitude and number of undulations with a well-defined mathematical function. An extension of the present study with the effects of cavity inclination and aspect ratio will be the interest for future work.

Practical implications

The study might be useful for the design of solar collectors, room ventilation systems and electronic cooling systems.

Originality/value

This work examines the effects of sinusoidal heating on convective heat transfer in a wavy porous cavity in the presence of internal heat generation or absorption. The study might be useful for the design of solar collectors, room ventilation systems and electronic cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 October 2024

Sivasankaran Sivanandam, Chandrapushpam Thangaraj and M. Bhuvaneswari

This study aims to present the consequences of activation energy and the chemical reactions on the unsteady MHD squeezing flow of an incompressible ternary hybrid nanofluid (THN…

Abstract

Purpose

This study aims to present the consequences of activation energy and the chemical reactions on the unsteady MHD squeezing flow of an incompressible ternary hybrid nanofluid (THN) comprising magnetite (FE3O4), multiwalled carbon nano-tubes (MWCNT) and copper (Cu) along with water (H2O) as the base fluid. This investigation is performed within the framework of two moving parallel plates under the influence of magnetic field and viscous dissipation.

Design/methodology/approach

Due to the complementary benefits of nanoparticles, THN is used to augment the heat transmit fluid’s efficacy. The flow situation is expressed as a system of dimensionless, nonlinear partial differential equations, which are reduced to a set of nonlinear ordinary differential equations (ODEs) by suitable similarity substitutions. These transformed ODEs are then solved through a semianalytical technique called differential transform method (DTM). The effects of several changing physical parameters on the flow, temperature, concentration and the substantial measures of interest have been deliberated through graphs. This study verifies the reliability of the results by performing a comparison analysis with prior researches.

Findings

The enhanced activation energy results in improved concentration distribution and declined Sherwood number. Enhancement in chemical reaction parameter causes disparities in concentration of the ternary nanofluid. When the Hartmann number is zero, value of skin friction is high, but Nusselt and Sherwood numbers values are small. Rising nanoparticles concentrations correspond to a boost in overall thermal conductivity, causing reduced temperature profile.

Research limitations/implications

Due to its firm and simple nature, its implications are in various fields like chemical industry and medical industry for designing practical problems into mathematical models and experimental analysis.

Practical implications

Deployment of the squeezed flow of ternary nanofluid with activation energy has significant consideration in nuclear reactors, vehicles, manufacturing facilities and engineering environments.

Social implications

This study would be contributing significantly in the field of medical technology for treating cancer through hyperthermia treatment, and in industrial processes like water desalination and purification.

Originality/value

In this problem, a semianalytical approach called DTM is adopted to explore the consequences of activation energy and chemical reactions on the squeezing flow of ternary nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

K. Janagi, S. Sivasankaran, M. Bhuvaneswari and M. Eswaramurthi

The aim of the present study is to analyze the natural convection flow and heat transfer of cold water around °C in a square porous cavity. The horizontal walls of cavity are…

Abstract

Purpose

The aim of the present study is to analyze the natural convection flow and heat transfer of cold water around °C in a square porous cavity. The horizontal walls of cavity are adiabatic, and the vertical walls are maintained at different temperatures. The right side wall is maintained at temperature θc, and the left side wall is maintained at sinusoidal temperature distribution.

Design/methodology/approach

The Brinkman–Forchheimer-extended Darcy model for porous medium is used to study the effects of density inversion parameter, Rayleigh number and impact of Darcy number and porosity. The finite volume method is used to solve the governing equations.

Findings

The heat transfer rate is increased on increasing the Darcy number and porosity. Also, the convective heat transfer rate is decreased first and then increased on increasing the density inversion parameter.

Research limitations/implications

The numerical computations have been carried out for the Darcy number ranging of 10(−4)Da ≤ 10(−1), the porosity ranging of 0.4 ≤ ε ≤ 0.8 and the density inversion parameter ranging of 0 ≤ Tm ≤ 1 and keeping Ra = 106.

Practical implications

The results can be used in the cooling of electronic components, thermal storage system and in heat exchangers.

Originality/value

The choice of consideration of sinusoidal heating and density maximum effect produces good result in flow field and temperature distribution. The obtained results can be used in various fields.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 August 2024

Chandrapushpam Thangaraj, Sivasankaran Sivanandam and Bhuvaneswari Marimuthu

This paper aims to examine the Dufour and Soret combined effects on the study of two-dimensional squeezed flow of copper water nanofluid between parallel plates along with applied…

Abstract

Purpose

This paper aims to examine the Dufour and Soret combined effects on the study of two-dimensional squeezed flow of copper water nanofluid between parallel plates along with applied (external) magnetic field. Impact of higher order chemical reaction is also considered.

Design/methodology/approach

The nonlinear partial differential equations (PDEs) are changed into system of ordinary differential equations (ODEs) by employing suitable similarity transformations. These transformed ODEs are then solved by means of a semianalytical method called differential transform method (DTM). Effects of several changing physical parameters on fluid flow, temperature and concentration have been deliberated through graphs.

Findings

It is observed that Dufour and Soret numbers are directly related to temperature profile and a reverse trend was observed in the concentration profile. Temperature enhancement is perceived for the enhanced Dufour number. Enhancement in Dufour number shows a direct association with Sh and Nu for all values of squeezing parameter.

Practical implications

The combined Dufour and Soret effects are used in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The squeeze nanoliquid flow can be used in the field of composite material joining, rheological testing and welding engineering.

Social implications

This study is mainly useful for geosciences and chemical engineering.

Originality/value

The uniqueness in this research is the study of the impact of cross diffusion on chemically reacting squeezed nanoliquid flow with the chemical reaction order more than one in the presence of applied magnetic force using a semianalytical procedure, named DTM.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 November 2023

Chandrapushpam T., M. Bhuvaneswari and Sivasankaran Sivanandam

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in…

Abstract

Purpose

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in existence of chemical reaction and external magnetic field.

Design/methodology/approach

The governing nonlinear equations are transformed into ordinary differential equations by means of similarity transforms, and the coupled mass and heat transference equations are resolved analytically with the application of differential transform method (DTM). The effects of different relevant parameters on velocity, temperature and concentration, including the squeeze number, magnetic parameter, Biot number, Darcy number and chemical reaction parameter, are illustrated with figures. In addition, for various parameters, the local skin friction coefficient, local Nusselt number and local Sherwood number are computed and are graphically displayed.

Findings

It is observed that the squeeze number has a direct relationship with Sherwood number and an inverse relationship with skin friction as Biot number increases. With enhanced Biot numbers, the temperature value increases during both squeeze and non-squeeze moments, but the temperature values are higher for squeeze moments compared to the other case.

Practical implications

This research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Social implications

The results are useful to thermal science community.

Originality/value

Unique and valuable insights are provided by studying the impact of chemical reaction on double diffusive MHD squeezing copper–water nanofluid flow between parallel plates filled with porous medium. In addition, this research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2013

A. Malleswaran, S. Sivasankaran and M. Bhuvaneswari

The main objective of the present study is to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid‐driven cavity.

Abstract

Purpose

The main objective of the present study is to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid‐driven cavity.

Design/methodology/approach

The non‐dimensional equations are discretized by the finite‐volume method. The upwind scheme and the central difference scheme are implemented for the convection and the diffusion terms, respectively.

Findings

On increasing the Richardson number, the overall heat transfer is increased whether the length and the location of the heater is considered or not. Among the various lengths of the heater considered, the total heat transfer is better only for the length LH=1/3 of the heater if it is extended from top or bottom of the cavity. In the case of location of the heater, the average heat transfer enhances for center location of the heater. Existence of the magnetic field suppresses the convective heat transfer and the fluid flow.

Practical implications

The results can be used in the cooling of electronic devices and heat transfer improvement in heat exchangers.

Originality/value

The numerical results obtained here focus on the detailed investigation of flow and temperature field in a discretely heated lid‐driven square cavity. The findings will be helpful in many applications such as heat exchangers and cooling of electronic devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2021

Abdelraheem M. Aly, Noura Alsedais and Hakan F. Oztop

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection…

Abstract

Purpose

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection caused by a rotating circular cylinder with paddles within a square cavity filled by a nanofluid.

Design/methodology/approach

The cavity is saturated by two wavy layers of non-Darcy porous media with a variable amplitude parameter. The embedded circular cylinder with paddles carrying T_h and C_h is rotating around the cavity center by a uniform circular velocity.

Findings

The lineaments of nanofluid velocity and convective flow, as well as the mean of Nusselt and Sherwood numbers, are represented below the variations on the frequency parameter, amplitude parameter of the wavy porous layers, Darcy parameter, nanoparticles parameter, Hartmann number and Ryleigh number. The performed simulations showed the role of paddles mounted on circular cylinders for enhancing the transmission of heat and mass within a cavity. The wavy porous layers at the lower Darcy parameter are playing as a blockage for the nanofluid flow within the porous area. Increasing the concentration of the nanoparticles to 6% reduces the maximum flow speed by 8.97% and maximum streamlines |ψ|max by 10.76%. Increasing Hartmann number to 100 reduces the maximum flow speed by 65.83% and |ψ|max by 75.54%.

Originality/value

The novelty of this work is to examine the effects of an inclined magnetic field and rotating novel shape of a circular cylinder with paddles on the transmission of heat/mass in the interior of a nanofluid-filled cavity saturated by undulating porous medium layers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 January 2025

Sivasankaran Sivanandam and Turki J. Alqurashi

The purpose of this study is to explore the impact of Joule heating, slip conditions, Dufour and Soret effects on three-dimensional magneto-convection of nanoliquid over a…

Abstract

Purpose

The purpose of this study is to explore the impact of Joule heating, slip conditions, Dufour and Soret effects on three-dimensional magneto-convection of nanoliquid over a rotating surface in the existence of thermal radiation, viscous dissipation and internal heat generation/absorption.

Design/methodology/approach

The considered physical system is modelled by a set of partial differential equations (PDEs) with conditions at surface. Then, the nonlinear PDEs are altered into a system of ordinary differential equations and they are solved numerically by the Runge−Kutta−Fehlberg method. Plotting the collected velocity, temperature and solute concentration characteristics allows one to see how relevant parameters affect the results. Calculations are made for skin friction and the rate of heat and mass transfer.

Findings

The outcomes are portrayed in the form of tables and graphs with a wide range of parameter involved in the study. It is observed that the local thermal energy transfer rate enriches on increasing the value of both thermal and solute slips. The solutal slip parameter suppresses the solute transport rate and thermal slip supports the solute transport.

Practical implications

Combining the Dufour and Soret effects is used in oil reservoirs, binary alloy solidification and isotope separation in mixtures of gases. Heat exchangers, nuclear reactors and thermal engineering can all benefit from the usage of nanofluid with Joule heating.

Social implications

This study is mainly useful for thermal sciences and chemical engineering.

Originality/value

The investigation of the effects of slip circumstances and Joule heating on magnetohydrodynamic rotating nanoliquid stream with thermal radiation and cross-diffusion makes this work unique. The discoveries produced are valuable and distinctive, and they have applications in many areas of thermal science and technology.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 136