Search results
1 – 8 of 8Snezana M. Djuric, Laszlo F. Nagy, Mirjana S. Damnjanovic, Nikola M. Djuric and Ljiljana D. Zivanov
The purpose of this paper is to test the measurement performances of a planar‐type meander sensor installed in robot foot in order to examine its potential application as ground…
Abstract
Purpose
The purpose of this paper is to test the measurement performances of a planar‐type meander sensor installed in robot foot in order to examine its potential application as ground reaction force sensor.
Design/methodology/approach
A planar‐type meander sensor is composed of two pairs of meander coils. Variation of input inductance between coils serves as a measure of small displacements in a plane. Pairs of meander coils are installed in an actuated robot foot to measure displacements proportional to normal or tangential components of ground reaction force which acts upon the foot. The sensor was modeled by the concept of partial inductance and a new simulation tool was developed based on this concept.
Findings
Pairs of meander coils were tested against angular displacements, and results showed that the sensor gives correct information about displacement regardless how the foot touches the ground with its whole area. Deviations between position of computed and real acting point of ground reaction force are relatively small. Owing to good results obtained, a miniaturized sensor was developed having the same performances as previously developed prototype.
Originality/value
This paper presents initial work in implementing a planar‐type meander sensor in robot foot as to measure ground reaction force. Developed simulation tool gives accurate analysis of inductance variation of meander structures. In addition, the measurement error and sensor's nonlinearity are analyzed. Calculated results show a good agreement with experimental results. Hence, miniaturized sensor, easier for implementation, is proposed.
Details
Keywords
Andrea M. Maric, Goran J. Radosavljevic, Walter Smetana and Ljiljana D. Zivanov
This paper presents performance comparison of RF inductors with the same lateral geometry applying different substrate configurations. The purpose of presented research is to…
Abstract
Purpose
This paper presents performance comparison of RF inductors with the same lateral geometry applying different substrate configurations. The purpose of presented research is to demonstrate and verify some advantages of low temperature co-fired ceramic (LTCC) technology in comparison to printed circuit board (PCB) technology based on the performance analysis of presented inductors in lower RF range.
Design/methodology/approach
The presented inductors are meander structures fabricated in LTCC and PCB technology, with same line width and outer dimensions. Performance analysis of all configurations is based on measurement results and numerical simulations. Advantage of LTCC technology is demonstrated by application of substrate pattering in order to maintain and/or improve expected inductor performances.
Findings
As expected, obtained results for the inductor with an air-gap show increase of the quality factor over 30 percent and widening of the operating frequency range by 50 percent when compared with the same LTCC structure without a gap. But what is more important the inductor with air-gap embedded inside LTCC stack maintains efficiency when compared to PCB inductor. This fact offers possibility of integration good quality components inside LTCC stack and reduction of used chip space.
Originality/value
Advantages of LTCC with respect to PCB design are demonstrated by efficiency increase of the proposed inductor configurations by means of design optimization relying on substrate pattering and incensement of the packaging density by embedding inductors. The presented findings are verified through consistency of measurement results and simulated data.
Details
Keywords
Mirjana S. Damnjanović, Ljiljana D. Živanov, Snezana M. Djurić, Andrea M. Marić, Aleksandar B. Menićanin, Goran J. Radosavljević and Nelu V. Blaž
Significant achievements in ferrite material processing enable developments of many ferrite devices with a wide range of power levels and working frequencies, which make demands…
Abstract
Purpose
Significant achievements in ferrite material processing enable developments of many ferrite devices with a wide range of power levels and working frequencies, which make demands for new characterization and modelling methods for ferrite materials and components. The purpose of this paper is to introduce a modelling and measurement procedure, which can be used for the characterization of two‐port ferrite components in high frequency range.
Design/methodology/approach
This paper presents a commercially available ferrite component (transformer) modelling and determination of its electrical parameters using in‐house developed software. The components are measured and characterized using a vector network analyzer E5071B and adaptation test fixture on PCB board. The parameters of electrical equivalent circuit of the ferrite transformer parameters are compared with values extracted out of measured scattering parameters.
Findings
A good agreement between modelled and extracted electrical parameters of the ferrite transformer is found. The modelled inductance curves have the same dependence versus frequency as extracted ones. That confirms the model validity in the wide frequency range.
Originality/value
In‐house developed software based on proposed model provides inclusion of the ferrite material dispersive characteristics, which dominantly determines high‐frequency behaviour of two‐port ferrite components. Developed software enables fast and accurate calculation of the ferrite transformer electrical parameters and its redesign in order to achieve the best performance for required application.
Details
Keywords
Goran J. Radosavljević, Walter Smetana, Andrea M. Marić, Ljiljana D. Živanov, Michael Unger and Günther Stangl
The purpose of this paper is to demonstrate the influence of material properties and fabrication technique on the performance of an embedded pressure sensor. Based on conducted…
Abstract
Purpose
The purpose of this paper is to demonstrate the influence of material properties and fabrication technique on the performance of an embedded pressure sensor. Based on conducted theoretical analysis a suitable material and technological technique that gave the best behavior of designed sensor was chosen for its fabrication. This is verified on the example of a resonant pressure sensor, designed for operation in the MHz range.
Design/methodology/approach
A sensor module is fabricated using the low temperature co‐fired ceramics (LTCC) technology and sputtering technique for electrodes deposition. The module comprises an inductor connected with a variable capacitor formed by the sensor membranes in a parallel LC circuit. An extensive parallel analysis of sensors performance for sensors with thick film (screen‐printed) and thin film (sputtered) electrodes is demonstrated. Mechanical and electrical parameters (Young's modulus and permittivity) of different tape materials that are considered for sensor fabrication are determined at room temperature.
Findings
Implementation of the sputtering technique for deposition of the thin film electrodes and usage of tapes with higher elasticity significantly contribute to the increase of the sensor performance (improved sensitivity) compared to designs found in available literature. Experimentally attained results are compared with the ones obtained by analytical calculations achieving good agreement of obtained results.
Originality/value
The improvement of sensor sensitivity by means of evaluation of different tape material and electrode thickness reduction is demonstrated for the first time. The presented results of the sensor equivalent model and the sensor‐antenna system are in good compliance with experimental data determined through measurement.
Details
Keywords
Aleksandar B. Menićanin, Mirjana S. Damnjanović and Ljiljana D. Živanov
The appropriate selection of a testing method largely determines the accuracy of a measurement. Parasitic effects associated with test fixture demand a significant consideration…
Abstract
Purpose
The appropriate selection of a testing method largely determines the accuracy of a measurement. Parasitic effects associated with test fixture demand a significant consideration in a measurement. The purpose of this paper is to introduce a measurement procedure which can be used for the characterization of surface mount devices (SMD) components, especially devoted to SMD inductors.
Design/methodology/approach
The paper describes measurement technique, characterization, and extracting parameters of SMD components for printed circuit board (PCB) applications. The commercially available components (multi‐layer chip SMD inductors in the ceramic body) are measured and characterized using a vector network analyzer E5071B and adaptation test fixture on PCB board. Measurement results strongly depend on the choice of the PCB; the behaviour of the component depends on the environment where the component is placed.
Findings
The equivalent circuit parameters are extracted in closed form, from an accurate measurement of the board‐mounted SMD inductor S‐parameters, without the necessity for cumbersome optimization procedures, which normally follow the radio frequency circuit synthesis.
Originality/value
It this paper, a new adaptation test fixture in PCB technology is realized. It is modeled and it has provided the extraction of parameters (intrinsic and extrinsic) of SMD inductor with great accuracy.
Details
Keywords
Goran Stojanović, Ljiljana Živanov and Mirjana Damnjanović
Present 3D electromagnetic simulators have high accuracy but they are time and memory expensive. Owing to a fast and simple expression for inductance is also necessary for initial…
Abstract
Purpose
Present 3D electromagnetic simulators have high accuracy but they are time and memory expensive. Owing to a fast and simple expression for inductance is also necessary for initial inductor design. In this paper, new efficient methods for total inductance calculation of meander inductor, are given. By using an algorithm, it is possible to predict correctly all inductance variations introduced by varying geometry parameters such as number of turns, width of conductor or spacing between conductors.
Design/methodology/approach
The starting point for the derivation of the recurrent formula is Greenhouse theory. Greenhouse decomposed inductor into its constituent segments. Meander inductor is divided into straight conductive segments. Then the total inductance of the meander inductor is a sum of self‐inductances of all segments and the negative and positive mutual inductances between all combinations of straight segments. The monomial equation for the total inductance of meander inductor has been obtained by fitting procedure. The fitting technique, using the method of least squares, finds the parameters of the monomial equation that minimize the sum of squares of the error between the accurate data and fitted equation. The paper presents new expression for inductance of meander inductor, in the monomial form, which is suitable for optimization via geometric programming. The computed inductances are compared with measured data from the literature.
Findings
The first, recurrent, expression has the advantage that it indicates to the designer how the relative contributions of self, positive, and negative mutual inductance are related to the geometrical parameters. The second expression presents the inductance of the meander inductor in the monomial form, so that the optimization of the inductor can be done by procedure of the geometric programming. Simplicity and relatively good accuracy are the advantages of this expression, but on the other hand the physical sense of the expression is being lost. Thus, the effects of various geometry parameters on inductance are analyzed using two expressions and the software tool INDCAL.
Practical implications
Applied flexible efficient methods for inductance calculation of meander inductor are able to significantly increase the speed of RF and sensor integrated circuit design.
Originality/value
For the first time a simple expression for fast inductance calculation for meander inductor in monomial form is presented. It is explained how such an expression is generated, which can be directly implemented in circuit simulators.
Details
Keywords
Mirjana Damnjanović, Goran Stojanović, Ljiljana Živanov and Vladan Desnica
Present 3D electromagnetic simulators have high accuracy, but they are time and memory expensive. Because of that, fast and simple expression for impedance is also necessary for…
Abstract
Purpose
Present 3D electromagnetic simulators have high accuracy, but they are time and memory expensive. Because of that, fast and simple expression for impedance is also necessary for initial inductor design. In this paper new efficient method for total impedance calculation of ferrite electromagnetic interference (EMI) suppressor is given. By using an algorithm, it is possible to predict correctly all variations of electrical characteristics introduced by varying geometry parameters of EMI suppressor.
Design/methodology/approach
The starting point for calculation of electrical characteristics of EMI suppressor is Greenhouse theory. Greenhouse decomposed inductor into its constituent segments. Basically, all segments of conductive layer are divided into parallel filaments having small, rectangular cross sections. The self‐ and mutual‐inductance were calculated using the concept of partial inductance. Total impedance of EMI suppressor is calculated taking care of dimension of chip size, material that are used and geometry of conductive layer.
Findings
The Simulator for Planar Inductive Structures (SPIS™) simulates effects of ferrite materials and geometrical parameters of planar inductive structures. With proposed software tool, designers can predict performance parameters quickly and easily before costly prototypes are built. SPIS™ software offers substantially reduced time to market, and increases device performance. The computed impedances, given by our software tool are compared with measured data and very good agreement was found.
Practical implications
Applied flexible efficient methods for impedance calculation of EMI suppressor are able to significantly increase the speed design of multilayer suppressors for universal series bus, low‐voltage differential signaling and in other high‐speed digital interfaces incorporated in notebooks and personal computers, digital cameras and scanners. Also, ferrite suppressors have been successfully employed for attenuating EMI in switching power supplies, electronic ignition systems, garage door openers, etc.
Originality/value
The paper presents realized structures of ferrite EMI suppressors. New geometries of conductive layer are proposed. In addition, using simple model of inductor, the paper develops a CAD simulation tool SPIS™ for calculation of electrical characteristics of EMI suppressors with different geometry of conductive layer.
Details
Keywords
Dragan D. Milašinović, Ljiljana Kozarić, Smilja Bursać, Miroslav Bešević, Ilija Miličić and Đerđ Varju
The purpose of this paper is to contribute to the solution of the buckling and resonance stability problems in inelastic beams and wooden plane trusses, taking into account…
Abstract
Purpose
The purpose of this paper is to contribute to the solution of the buckling and resonance stability problems in inelastic beams and wooden plane trusses, taking into account geometric and material defects.
Design/methodology/approach
Two sources of non-linearity are analyzed, namely the geometrical non-linearity due to geometrical imperfections and material non-linearity due to material defects. The load-bearing capacity is obtained by the rheological-dynamical analogy (RDA). The RDA inelastic theory is used in conjunction with the damage mechanics to analyze the softening behavior with the scalar damage variable for stiffness reduction. Based on the assumed damages in the wooden truss, the corresponding external masses are calculated in order to obtain the corresponding fundamental frequencies, which are compared with the measured ones.
Findings
RDA theory uses rheology and dynamics to determine the structures' response, those results in the post-buckling branch can then be compared by fracture mechanics. The RDA method uses the measured P and S wave velocities, as well as fundamental frequencies to find material properties at the limit point. The verification examples confirmed that the RDA theory is more suitable than other non-linear theories, as those proved to be overly complex in terms of their application to the real structures with geometrical and material defects.
Originality/value
The paper presents a novel method of solving the buckling and resonance stability problems in inelastic beams and wooden plane trusses with initial defects. The method is efficient as it provides explanations highlighting that an inelastic beam made of ductile material can break in any stage from brittle to extremely ductile, depending on the value of initial imperfections. The characterization of the internal friction and structural damping via the damping ratio is original and effective.
Details