Laura Jasińska, Krzysztof Szostak, Milena Kiliszkiewicz, Piotr Słobodzian and Karol Malecha
The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with…
Abstract
Purpose
The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with microfluidic channels for sensor applications. Normally, conductive patterns are deposited on an LTCC substrate by means of the screen-printing technique, but in this paper applicability of ink-jet printing in connection with LTCC materials is demonstrated.
Design/methodology/approach
A simple microfluidic LTCC sensor based on the microstrip ring resonator was designed. It was assumed the micro-channel, located under the ring, was filled with a mixture of DI water and ethanol, and the operating frequency of the resonator was tuned to 2.4 GHz. The substrate was fabricated by standard LTCC process, and the pattern of the microstrip ring resonator was deposited over the substrate by means of an ink-jet printer. Performance of the sensor was assessed with the use of various volumetric concentrations of DI water and ethanol. Actual changes in concentration were detected by means of microwave measurements.
Findings
It can be concluded that ink-jet printing is a feasible technique for fast fabrication of micro-strip circuits on LTCC substrates, including microfluidic components. Further research needs to be conducted to improve the reliability, accuracy and performance of this technique.
Originality/value
The literature shows the use of ink-jet printing for producing various conductive patterns in different applications. However, the idea to replace the screen-printing with the ink-jet printing on LTCC substrates in connection with microwave-microfluidic applications is not widely studied. Some questions concerning accuracy and reliability of this technique are still open.
Details
Keywords
Laura Jasińska, Karol Malecha, Krzysztof Szostak and Piotr Słobodzian
The low-temperature co-fired ceramics (LTCC) microfluidic-microwave devices fabrication requires careful consideration of two main factors: the accuracy of deposition of…
Abstract
Purpose
The low-temperature co-fired ceramics (LTCC) microfluidic-microwave devices fabrication requires careful consideration of two main factors: the accuracy of deposition of conductive paths and the modification needed to the standard process of the LTCC technology. Neither of them are well-described in the literature.
Design/methodology/approach
The first part of this paper deals with the individual impact of screen parameters such as aperture, photosensitive emulsion thickness and mounting angle on the precision of the screen-printed conductive paths fabrication. For the quantitative analysis purposes, the design of experiment method with Taguchi orthogonal array and analysis of variance was used. The second part contains the characterization of the complex permittivity measured for different values of LTCC substrates lamination pressure.
Findings
It can be concluded, that the combination of aperture, equal to 24 µm, emulsion thickness 20 µm and mounting angle 22.5° ensures the highest quality of printed conductive metallization. Furthermore, the obtained results indicate, that the modification of the lamination pressure does not affect significantly the dielectric parameters of the LTCC substrates.
Originality/value
This paper shows two aspects of the fabrication of the microfluidic-microwave LTCC devices. First, the resolution of the applied metallization is critical in manufacturing high-frequency structures. The obtained experimental results have shown that optimal screen parameters, in terms of conductive pattern quality, can be found. Second, the received outcomes indicate that the changes in the lamination pressure do not affect significantly the electrical parameters of the substrate. Hence, this effect does not need to be taken into account.
Details
Keywords
Witold Nawrot and Karol Malecha
The purpose of this paper is to review possibilities of implementing ceramic additive manufacturing (AM) into electronic device production, which can enable great new…
Abstract
Purpose
The purpose of this paper is to review possibilities of implementing ceramic additive manufacturing (AM) into electronic device production, which can enable great new possibilities.
Design/methodology/approach
A short introduction into additive techniques is included, as well as primary characterization of structuring capabilities, dielectric performance and applicability in the electronic manufacturing process.
Findings
Ceramic stereolithography (SLA) is suitable for microchannel manufacturing, even using a relatively inexpensive system. This method is suitable for implementation into the electronic manufacturing process; however, a search for better materials is desired, especially for improved dielectric parameters, lowered sintering temperature and decreased porosity.
Practical implications
Relatively inexpensive ceramic SLA, which is now available, could make ceramic electronics, currently restricted to specific applications, more available.
Originality/value
Ceramic AM is in the beginning phase of implementation in electronic technology, and only a few reports are currently available, the most significant of which is mentioned in this paper.